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Summary

A unified theory of secondary instability in wall-bound shear flows has been developed.
This theory rests on Floquet systems of stability equations and permits classification and
quantitative analysis of different modes of secondary instability in the three-dimensional
stage of laminar-turbulent transition. The catalogue of solutions is consistent with observa-
tions and predicts other phenomena that have not been identified in experiments. The
n theoretical results have been used to reproduce patterns in flow visualizations by computer
E animation. Analysis of the energy balance has shown a feedback loop between mean-flow,
two-dimensional, and three-dimensional disturbances that is considered key to the process
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- of self-sustained transition. Various techniques have been developed to investigate details
-::: of the nonlinear three-dimensional processes involved in this feedback loop.
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1. Research Objectives

The project “On the Three-Dimensional Structure of Boundary Layers in Transition
to Turbulence” under AFOSR Contract F49620-84-K-0002 was originally planned as a joint
theoretical - experimental effort with Thorwald Herbert and William S. Saric as principal
investigators. After Dr. Saric left VPI & SU in Summer 1984, the contract was split, the
research plan was rearranged, and most of the theoretical work remained at VPI & SU with
Th. Herbert as principal investigator. The working period for this contract was 02/01/84 -
01/31/87 with an extension until 02/28/87.

A detailed description of the research objectives has been given in sections 2 and 3 of
the original proposal. Overall, the work aimed at gaining insight into the intricate process
of laminar-turbulent transition in plane shear flows, especially in boundary layers. Our
research goals during the three-year period of the contract were comprised in four topics
that are detailed in the following:

(1) Transition mechanisms
(1.1) Analysis of fundamental (peak-valley splitting) modes in boundary layers
(r.2) Analysis of combination resonance in Poiseuille flow and boundary-layer flow

(1.3) Development of weakly nonlinear models of subharmonic instability and
evaluation of their utility .

(1.4) Analysis of energy balance and vorticity dynamics for deeper understanding
of transition and design of improved transition models

(1.5) Analysis of the evolution of time-periodic and isolated wave packets in a
weakly nonlinear framework.

(2) Three-dimensional flow field

(2.1) Determine the amplitude levels for significant nonlinear interaction of three-
dimensional disturbances with the modulated basic flow

(2.2) Calculation of the three-dimensional flow field, in particular the formation of
high-shear layers during peak-valley splitting
(2.3) Analysis of the scales of the three-dimensional flow and of approximations
for tertiary high-frequency instability
(2.4)*  Reproduction of smoke-flow visualizations by computer animation of theoret-
ical data
(3) Effect of free-stream disturbances

(3.1) Development of asymptotic or computational models for the entrainment of
sound and exterior disturbances into the leading-edge flow for given contour
and pressure distribution

(3.2) Relation between phenomena in the viscous sublayer of turbulent flows and
phenomena in pretransitional flows; analysis of scales and simple models of
the feedback loops

(4) Nonlinear stages of three-dimensional development

(4.1) Analysis of three-dimensional equilibrium states originating {rom subhar-
monic instability in plane Poiseuille flow
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(4.2) Analysis of three-dimensional states associated with peak-valley splitting and
a longitudinal vortex system

(4.3) Tracing of the most dangerous route (4.1 or 4.2) for a general parabolic velo-
city distribution

(4.4) Discussion of the relevance of these motions for the forced situation in the
laminar sublayer of turbulent flows

The third topic, the study (3) of the effect of free-stream disturbances, especially the
entrainment of exterior disturbances into the flow around the leading edge of a flat plate
was adopted by W. S. Saric. This computational work is conducted at Arizona State
University while the experimental facilities are under development. The flow visualizations
(2.4) were not part of the original proposal. This topic has been included since the still pic-
tures of laboratory experiments are difficult to interpret and usually show a mixture of
different modes.

2. Research Achievements

Since the first description of the three-dimensional nature of boundary layer transition
by Klebanoff et al. (1962), the explanation of the observed three-dimensional phenomena
has been a challenge to theoreticians and stimulated the study of numerous weakly non-
linear (low order perturbation) models. Failure of these studies to provide convincing expla-
nation and quantitative characterization of the observed phenomena can be caused by
either (i) too low order of truncation, (ii) use of perturbation series outside their radii of
convergence, or (iii) inappropriate choice of the primary instability modes involved in the
model. The formulation of a rational perturbation approach (Herbert 1980, 1983a) allowed
analysis of high-order series and led to the conclusion that previous and new models (Her-
bert & Morkovin 1980) of resonant or non-resonant interactions are insufficient for describ-
ing the observations of Klebanoff et al. (1962).

Guided by a revised interpretation of the observations, Herbert & Morkovin (1980)
suggested that three-dimensional disturbances originate from parametric excitation in the
streamwise periodic flow created by the primary TS wave. Simultaneously, Orszag &
Patera (1981) found exponential growth of small 3D disturbances in transition simulations
of channel flow and attributed this fact to the activity of a linear stability mechanism.
Consequently, a theory of linear secondary instability based on Floquet systems of distur-
bance equations was formulated and first applied for studying three-dimensional distur-
bances in streamwise periodic equilibrium states in a plane channel (Orszag & Patera 1981,
Herbert 1981, 1983b). There are four main results of this work: (i) Three-dimensional
secondary instability can lead to different types of disturbances. Primary resonance with
the TS wave produces peak-valley splitting as the TS amplitude exceeds some threshold.
Subharmonic resonance can occur at even smaller amplitudes. (ii) Calculated disturbance
velocities and growth rates are consistent with experiments. Three-dimensional modes grow
on a fast convective time scale, typically by a factor of 100 within 5 cycles of the TS wave.
(iii) Secondary instability originates from the redistribution of spanwise vorticity into
streamwise periodic lumps near the critical layer. Growth of three-dimensional modes arises
from combined vortex tilting and stretching. (iv) Analysis of the limit TS amplitude
A — 0 reveals the intricate connection between modes of primary and secondary
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instability. This provides for the first time a rational means for evaluating existing and con-
N structing new models of weakly nonlinear interactions.

Encouraged by the results for channel flow and guided by the nature of the secondary

instability mechanism, Herbert (1983c) introduced approximations which permit application
@ of the theory to the full class of classical stability problems, especially boundary layers. A
‘ comprehensive survey on the development and application of this approach has been given
as an invited lecture at the Tenth U. S. National Congress of Applied Mechanics, June 16-

L]
;"’ 20, 1986, Austin, Texas. For further information, Appendix A contains a copy of this
paper. The systematic study of the various types of three-dimensional disturbances and
v, review of experimental information has led to a broader and revised picture of transition in
:‘_ boundary layers. Many of these views are summarized in an article to be published in
o Annual Reviews of Fluid Mechanics, Vol. 20, 1988. A preprint of this article is provided as
5 Appendix B. Here, we restrict discussion only to the main conclusions and some incomplete
& results.
The Floquet approach explains the linear secondary instability with respect to 3D dis-
R turbances as originating from parametric instability of a plane basic flow that is periodic in
Iy space and time. Different classes of modes are associated with different types of resonance:

primary resonance results in peak-valley splitting modes; principal parametric resonance
causes subharmonic modes of instability; both these classes can be considered special cases
of combination resonance; vortex pairing is a degenerate (two- dimensional) case of subhar-
monic instability.

ks

-

t:' The theory is capable of quantitatively predicting the temporal growth rates and the

. spatial disturbance field up to the stages immediately preceding breakdown and transition.
Comparison with the experiments of Kachanov & Levchenko (1984) has verified the results

,‘! on the subharmonic instability in the Blasius flow (Herbert 1984a). Comparison with the

experiments of Klebanoff et. al. (1962) has shown that the theory explains all the essential
qualitative and quantitative aspects of peak-valley splitting in the Blasius flow (Herbert
1985). A detailed comparison with more recent measurements of peak-valley splitting by
Cornelius (1985) will be published in the near future. Nishioka & Asai (1984) found essen-
tial agreement of their measurements on peak-valley splitting in plane Poiseuille flow with
our results, even at unexpectedly large disturbance amplitudes. Recent results using the
spatial (instead of the temporal) growth concept indicate further improvements in the pred-
iction of growth rates, especially for boundary layers in adverse pressure gradients.

s |

The development of the Floquet theory of secondary instability arising from the
growth of TS waves in shear flows can well be considered a major breakthrough in hydro-
dynamic stability theory. Our work, although yet incompletely published, has found
widespread attention. The formal classification of phenomena has provided an ordering
scheme for virtually inconsistent observations. The explanation of Klebanoff's experimental
results was overdue. Most important for practical purpose, however, seems to be the capa-
bility of predicting the growth rates for the various modes of secondary instability. Given
the disturbance background, e.g. in a boundary layer, the amplitude of a specific distur-
-n bance as it grows in time or in the streamwise direction can be calculated. Experiments
. show that, as this amplitude reaches a certain level, the secondary disturbance takes over
and shortly causes breakdown. Therefore, the prediction of breakdown is a matter of
developing an empirical or theoretical measure for this critical amplitude level.

% v
AP

N

e T W

o &8 S

L7,
.“ s |

N e ORI ¢ T P A OOUINC AN 0 GOV ¢ At ity Gt PR AL 33
.’. X "’ RN !i'? N, ‘.v’T‘tl A “2!; AR R R ?\Mi"’l'q,t'q. ‘o‘t ANK 5’1?"“.0 n.t':‘l » i‘:.‘i‘:'l‘!'.l'q.n'a,t'a ‘.u‘i‘f.l.!‘i‘i‘i“x‘t'."‘r Ot A "!‘Q‘.'c LX)




.

s

2

L e BB

i

.

e,

k= _

Il
¥

»
13

S0

- RS

'l “I } "

.=

£ JO0

e
o -
s

The close relation between the amplitude level for self-sustained growth of secondary
disturbances and breakdown originates from the vortical nature of the secondary instability
mechanisms. At sufficiently large amplitude, the primary TS-wave produces an array of
vorticity concentrations near the critical layer. Bending, tilting, and stretching of these dis-
tributed vortices in regions of different streamwise velocity causes the strong growth of
secondary disturbances on a convective (rather than viscous) time scale (Orszag & Patera
1983). As another consequence, this strong secondary instability can be considered a gen-
eric phenomenon in flows with primary TS-instability.

In a linear framework, secondary instability leads a parasitic life on the TS waves.
Secondary modes may grow but will harmlessly decay as the vital vorticity concentrations
fade away. However, the strong growth leads rapidly to three-dimensional amplitudes large
enough to affect the two-dimensional wave development. In fact, the nonlinear self-
interaction of the 3D mode may reproduce a vorticity concentration that sustains its
growth. This process is key to the low subcritical transition Reynolds numbers in plane
Poiseuille flow (and probably other closed flows) as well as to the self-sustained transition in
boundary layers.

We have studied the nonlinear processes associated with the rapid growth of vortical
disturbances on the basis of both the energy equation and the momentum equations. The
analysis of the energy transfer between mean flow, TS wave, and 3D disturbances has_been
conducted first for plane Poiseuille flow (Croswell 1985, Herbert 1986a) and is currently
adapted to boundary-layer flows. Although our approach differs in various aspects from
Orszag & Patera’s, we were led to essentially the same conclusions on the highly localized
energy transfer from the mean flow into the 3D field, the close relation between areas of
concentrated vorticity and strong energy transfer, and the catalytic role of the TS wave in
this process. Beyond the concentrations in the plane of the mean flow, we also identify
highly localized regions of strong energy transfer in the plane normal to the mean flow at
those locations where the deflection of the spanwise vortex tubes is strongest. We also asso-
ciate the areas of energy transfer with the symmetries of the various peak-valley splitting
and subharmonic modes.

Analysis of the global energy transfer over a domain formed by the channel walls and
the streamwise and spanwise wavelengths of the 3D disturbances reveals on one hand the
different scale (convective rather than viscous) of the secondary instability, on the other
hand an illuminating distribution of the transfer terms. At realistic amplitudes, typically
60% of the energy received from the mean flow provide the growth of the 3D mode, 30%
are dissipated, while 109 are transferred into the 2D field. Whereas this loss is of minor
importance for the 3D disturbance, the gain for the 2D field is considerable and may boost
the growth or easily overweigh the (viscous) decay of the TS wave. In fact, the energy
transfer from the 3D into the 2D field can be considered responsible for the observed ulti-
mate growth of the 2D wave on a convective scale as the 3D wave attains a sufficiently high
amplitude. Further considered the catalytic role of the 2D wave for the 3D growth, this
energy transfer appears to be key to the feedback loop that causes self-sustained growth of
the later stage of transition. We currently analyze this hypothesis for the Blasius boundary
layer where some limited experimental information is available.

In addition to using the energy equation, we have pursued various approaches of solv-
ing the equations of motion. The initial attempt to study the nonlinear evolution of the 3D
field in the boundary layer with perturbation methods applied to improved models of
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combined primary models was largely unsuccessful. Similar experience has been reported

2,
o

= by Nayfeh (1985) with respect to the linear secondary instability. This work has clearly
& shown the important role of Squire modes in the interaction indicated by dominating values

of their interaction coefficients. It has not become clear, however, whether the overall
! failure of this approach is due to certain modes that may be missing in the model or due to
Bt . . .

lacking convergence of the series. As another suspect, the role of the continuous spectrum
-2 inherent to the primary stability equations in semi-infinite domains is unknown. In view of
)

the numerous modes involved, a continuation of the approach to sufficiently high order for
a series analysis is illusionary. The rather intricate analytical connections between

., numerous modes at extremely small amplitudes observed in the (linear) Floquet analysis
':. (Herbert 1983) may well indicate a convergence problem of the weakly nonlinear method.

A more successful perturbation approach has been developed exploiting the fact that
the interactions between 3D primary modes in earlier models are comprised in the modes of
'.' secondary instability readily available from Floquet analysis. As a simple case, we have

developed the formulation and the numerical tools for studying the nonlinear development
~ of a single (subharmonic or peak-valley splitting) mode of secondary instability up to rea-
ft'} sonably high order. The most tedious task in this approach is the verification of the proper
function of the computer programs. Surprisingly, the expansion in the spanwise direction is
\ formally very similar to the expansion for 2D primary modes in the streamwise direction.
i The account for the streamwise periodic structure of the 3D field, however, is a non-trivial
step that complicates formalism and computer programs and requires major computational

5:" efforts.
o As a result of the expansion in the amplitude of a single secondary mode, we obtain at
second order a modification of the mean flow, a contribution to the 2D fluctuation field, a
spanwise periodic distortion of the mean flow, and the first harmonic of the 3D disturbance

s

which is periodic in the streamwise and spanwise directions. Resonance with the 2D wave
- is not incorporated in the single-mode expansion. At third order, we obtain a Landau con-

:Q‘_: stant that accounts for those nonlinear effects on the growth rate of the 3D mode that
=" directly originate from the 3D-3D interaction. The indirect effects of the modified mean

flow on the TS amplitude growth, and through modification of the 2D wave field can be
g estimated a posteriori. It is not unexpected that the modifications of the planar field are
" especially strong in the neighborhood of the critical layer where the secondary modes exhi-
N bit maximum rms fluctuation. A first report on the formalism and results of this single-

mode expansion has been given by Crouch & Herbert (1986).

A more complete model of combined 2D-3D and 3D-3D interaction is currently
- developed. In order to verify formulation and computer programs, we have recently imple-
mented the symbolic manipulator Macsyma. The amplitude equations for this interaction
model provide the essential coupling terms at second order. Although formally equivalent

» to the equations obtained from energy analysis, these amplitude equations provide more

» accurate information since they incorporate the change in the spatial structure of the flow
field. In the a posteriori energy analysis, these changes cannot be taken into account.

N Prior to the availability of detailed results on the nonlinear development, we have stu-

died the three-dimensional flow field for subharmonic, fundamental, and combination
modes. Velocity and vorticity distributions compare favorably with the scarce experimental
data base. Since recent experimental work has emphasized the visualization of the 3D stage
of transition, we have developed the tools for tracing path lines and for displaying the
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temporal development of time lines on a high-resolution work station. The development
due to subharmonic secondary instability has been recorded in 2 8 mm movie. This movie
shows for the first time in detail the formation of the often observed pattern of TS waves
and the rapid evolution of the staggered structure of A vortices after the subharmonic dis-
turbance has grown to sufficient amplitude. A second movie has been produced for visuali-
zation of other modes, especially those arising from combination resonance, and to demon-
strate the dependence of the pictures on the location of the smoke wire.

For the analysis of three-dimensional equilibrium motions in plane Poiseuille flow, we
have mapped the bifurcation points in terms of Reynolds number, wavenumber, and TS-
amplitude. The nonlinear algebraic system representing the equations of motion for
interacting two-dimensional and three-dimensional modes has been formulated and coded
for the subharmonic and fundamental cases. The application of the programs has been
held up, however, by the lack of convergence of the Newton method for solving the non-
linear equations. The suspicion of errors in the code turned out to be unjustified. The rea-
son is the occurrence of a multiple (double) zero at the bifurcation point. Present work is
directed toward overcoming this problem by use of improved starting solutions which may
lead to local convergence at sufficient distance from the bifurcation point. Such improved
solutions can be constructed by use of the perturbation method for 2D-3D interaction as
soon as it has been verified and adapted to plane Poiseuille flow. As an alternative, we
attempt to implement the extended Newton method that covers the case of double zercs.

3. Personnel

During the working period, the following personnel were partly supported under Con-
tract F19620-84-K-0002:

Thorwald Herbert, Professor, Principal Investigator
Alan Haddow, Assistant Professor (visiting)
German Santos, Graduate Student (Ph.D. level)
Jeffrey Crouch, Graduate Student (Ph.D. level)
Joseph Croswell, Graduate Student (M.S. level)
Fabio Bertolotti, Graduate Student (M.S. level)
Charlotte R. Hawley, Research Specialist

Vineet Mehta, Undergraduate Student (hourly)

German Santos developed the concept of combination resonance for boundary layers
and studied the application to plane shear flows. He also developed the numerical tools to
study secondary instability in parallel lows in an infinite domain (mixing layer, wake). He
will receive his degree in 1987.

Jefl Crouch developed formulation and computer programs for an innovative perturba-
tion analysis of nonlinear secondary instability. He will receive his degree in 1987/88.

Joseph Croswell developed the formalism for the study of the energy balance and
energy transfer between mean flow, primary and secondary disturbances. He applied this
formalism to plane Poiseuille low. He received the M.S. degree in Engineering Mechanics in
July 1985.
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. Fabio Bertolotti was previously involved in research sponsored by the Office of Naval
« Research. He performed an analysis of spatially growing subharmonic modes in boundary
i layers with pressure gradients and studied the relation between secondary instability and

separation. After receiving his M.S. in Engineering Science in June 1985, he designed and
g built the hardware and wrote a software system for computer animation of unstable
e boundary-layer flows on Apollo workstations. After a one-year work period in automobile

aerodynamics with Pininfarina in Italy, he joined the Ph.D. program at VPI & SU in Sep-
tember 1986. He produced a movie on ‘smoke-wire’ visualizations of various routes to tran-
sition and works on a new concept for stability analysis of nonparallel flows.
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4. Publications

The following publications, reports and communications acknowledge the support by
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AFOSR:

(1) “On the Early Stages of IX-Breakdown in the Blasius Boundary Layer,”” by Th. Her-
:‘ bert, Bull. Amer. Phys. Soc. 29, p. 1540 (1984).
~ (2) “Secondary Instability of Plane Shear Flows - Theory and Application,”” by Th. Her-

. bert, in: Laminar-Turbulent Transition, (Ed.) V. V. Kozlov, p. 9-21, Berlin - Heidel-

é berg - New York: Springer-Verlag (1985).

(3) ‘“Three-Dimensional Phenomena in the Transitional Flat-Plate Boundary Layer,” by
N Th. Herbert, AIAA Paper No. 85-0489 (1985).
~ (4) “Aspects of Secondary Instability in Transition Management,” by Th. Herbert,

Abstract, AIAA Paper No. 85-0563 (1985).

“ (3) “On the Energetics of Primary and Secondary Instabilities in Plane Poiseuille Flow,”

by J. W. Croswell, M.S. Thesis, VPI & SU (1985).

(6) “The Subharmonic Route to Transition - An Animated Theory,” by Th. Herbert and
F. P. Bertolotti, 16 mm Movie, 8 min, VPI & SU (1985).

(7) “Floquet Analysis of Secondary Instability in Shear Flows,” by Th. Herbert, F. P. Ber-
tolotti, and G. R. Santos, in: Stability of Time Dependent and Spatially Varying
Flows, (Eds.) D. L. Dwoyer and M. Y. Hussaini, pp. 43-57, Springer-Verlag (1985).

(8) “Vortical Mechanisms in Shear Flow Transition,” Proc. Euromech 199 Colloquium
“Direct and Large Eddy Simulation of Turbulent Flows,”” Munich, Germany, 1985.
(Eds.) U. Schumann and R. Friedrich, Notes on Numerical Fluid Mechanics, Vol. 15,
pp. 19-36, Braunschweig: Vieweg (1986).
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f-" (9) “Analysis of Secondary Instability in Boundary Layers,” Proc. Tenth U. S. National
Congress of Applied Mechanics, Austin, Texas (1986). (Ed.) J. Lamb, pp. 445-456

7 ASME (1986).

] (10) “Combination Resonance in Boundary Layers,” by G. R. Santos and Th. Herbert,
Bull. Amer. Phys. Soc. 31, p. 1718 (1986).

:-:: (11) *“‘Perturbation Analysis of Nonlinear Secondary Instability in Boundary Layers,” by J.
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ANALYSIS OF SECONDARY INSTABILITIES IN BOUNDARY LAYERS

T. Herbert
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

Abstract

The practical need for prediction and ultimately control
of laminar-turbulent transition requires deeper under-
standing of the transition mechanisms and tools for
quantitative analysis of the transition process beyond
the onset of primary instability with respect to TS
waves. Motivated by this need, we have developed and
applied a linear theory of secondary instability with
respect to three-dimensional disturbances. This theory
permits formal classification and quantitative study of
the variety of observed three-dimensional phenomena
that provide the link between TS waves and transition.
The secondary instability originates from the dynamics
of streamwise periodic vorticity concentrations subject
to the surrounding shear flow. We give a survey on the
key elements that guided the development of the theory
and indicate the underlying mathematical concepts.
Various classes of three-dimensional disturbances are
identified. Some numerical results are given to charac-
terize the parametric dependence of the secondary ins-
tability. A comparison with hot-wire data is made. The
patterns of subharmonic modes in flow visualizations
are reproduced by -omputer-animation of the theoreti-
cal data.

1. Introduction

Early experimental studies using hot-wire
anemometers -2 or flow visualization techniques 34
have established a rather detailed picture of the phases
of transition. In short, the sequence of events is as fol-

lows:

(1) Onset of instability with respect to essentially
two-dimensional TS waves.

(2} Slow growth of the amplitude of the TS waves to a
finite value, typically 177 in terms of the stream-
wise rms fluctuation.
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(3) Onset of three-dimensionality on a spanwise scale
similar to the TS wavelength. Formation of peaks
and valleys, i.e. spanwise alternating regions of
enhanced or reduced disturbance growth. Simul-
taneous occurrence of longitudinal vortices.

(4) Rapid growth of the three-dimensionality (peak-
valley splitting). Formation of inflectional instan-
taneous velocity profiles with embedded high-shear
layers at the peak positions.

(5) Occurrence of small-scale, high-frequency velocity
fluctuations (spikes) in the neighborhood of the
high-shear layers

(6) Onset of irregular motion, breakdown of the lam-
inar flow.

Two remarks are in order on this picture of tran-
sition. First, this sequence of events relates only to the
particular experimental procedure that raises the level
of two-dimensional disturbances of given frequency
above the noisy background by using a vibrating rib-
bon. Second, this picture is incomplete as will be dis-
cussed below. Nevertheless, this sequence of events is
one possible route to transition and appears accessible
to analysis. In fact, this picture has stimulated and
guided various theoretical and computational work.

The first step of linear (primary) instability can
be predicted using the Orr-Sommerfeld equation for
parallel flows. Accounting for the streamwise growth of
the boundary layer  slightly modifies the results at low
Reynolds number and improves the agreement with the
experimental data of Schubauer & Skramstad.® The
characteristics of finite-amplitude TS waves in step 2
have been studied both with perturbation methods 7
and by numerically solving the Navier-Stokes equa-
tions.® At the low amplitudes of concern, however,
there is little effect of nonlinearity on the disturbance
growth or velority distribution.
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The true challenges are the qualitative changes
from two-dimensional to three-dimensional motion in
step 3 and from large to small scales in step 5. Origi-
nally, this latter phenomenon has been attributed to a
secondary instability mechanism. In fact, stability
analysis of the measured instantaneous velocity profiles
indicates that the occurrence of higher-frequency distur-
bances can be understood as a vortical instability of the
localized high-shear layers.9: 10, 11

The development of three-dimensionality in step 3
stimulated various theoretical analyses 12.13.14.15,16
using weakly nonlinear models. In some of these
models, the spanwise wavelength of the peak-valley
splitting appears as a parameter; other models are
based on the concept of resonant wave interaction at
specific spanwise wavelength. The development in this
field continued with more complex models of resonant
wave interactions 7 and non-resonant models involving
waves and longitudinal vortices.!® However, neither of
these weakly nonlinear theories was able to provide
satisfactory explanation and quantitative characteriza-
tion of the experimental facts.

For a variety of reasons, the experiments of
Nishioka and co-workers 1920, 21 on transition in plane
channel flow are a milestone in transition research.
First, this strictly parallel flow allows a rather clean
mathematical treatment. Much pioneering work has
been done on the nonlinear stability of this flow. This
work, however, has been in conflict with the experimen-
tal fact of low subcritical transition. Nishioka et al.
were the first to obtain laminar flow at supercritical
Reynolds number and to verify the results of the linear
stability analysis. At the same time, they verified the
methods used and the results obtained in studies of
nonlinear stability. Second, they found that trausition
in channel flow follows the same steps as in boundary
layers, and hence established channel flow as a proto-
type for transition analysis in wall-bound shear flows.
Third, they performed hot-wire measurements beyond
the occurrence of spikes and breakdown 22:23 and
extended the above picture. They showed that at
breakdown the flow exhibits all major characteristics of
turbulent flow, including the formation of a viscous
sublayer, and bursts (at the TS frequency).

The advance of computers and computational
methods has been a creeping revolution that allowed
simulations of transition, especially for channel flow
24.25, 26 ynder controlled conditions. Similar work for
boundary layers 27 28 suffers somewhat from the lack of
ideas to specify proper conditions for the outflow at the
downstream end of the computational domain. There-
fore, transition simulations for boundary layers usually
consider the temporal development of the flow in a spa-
tially periodic box. Surprisingly, computational and
experimental results are strikingly similar up to the
stage where numerical resolution becomes nsufficient.
The advantage of the numerical work is that the wealth
of information concealed in the computer output can be

extracted with relative ease which is not true of the
data obtained in laboratory experiments.

Motivated by new results from the research group
of the USSR Academy of Sciences in Novosibirsk, the
exchange of ideas at the AGARD Meeting in
Copenhagen, 1977, and the TUTAM Symposium on
Laminar-Turbulent Transition in Stuttgart, 1979, a new
generation of boundary-layer experiments was con-
ducted. Hot-wire analysis 29.30,31.32 apd flow visuali-
zations 33 led to a more detailed and extended picture
of the trarsition process. Perhaps the most striking
observation was the non-uniqueness of step 3 and the
subsequent events. Depending on minute parameter
changes (e.g. the level of ribbon vibration at otherwise
fixed conditions), peak-valley splitting can change over
into a subharmonic mode of three-dimensional develop-
ment. This mode can be clearly identified by a rela-
tively broad peak at halfl the TS frequency in power
spectra of the streamwise velocity fluctuations.34 Under
controlled conditions,30 clean subharmonic or combina-
tion resonance can be observed. The non-uniqueness
also extends to the spanwise wavelength of the three-
dimensional phenomena 33 which was earlier believed to
be a repeatable characteristic of the transition pro-
cess. 1, 35

In parallel with the gathering of new observations,
Blackwelder 36 and Herbert & Morkovin 8 suggested an
essential modification of the transition picture. Earlier,
the occurrence of three-dimensionality in step 3 had
been attributed to spanwise differential amplification of
TS waves, while the onset of spikes was considered as
arising from secondary instability. The revised picture
considers peak-valley splitting as the manifestation of a
secondary instability. Herbert & Morkovin 18 suggested
that three-dimensional disturbances originate from
parametric excitation in the streamwise periodic flow
created by the finite-amplitude TS wave. Simultane-
ously, Orszag & Patera 2% observed exponential growth
of small three-dimensional disturbances in their transi-
tion simulations in a plane channel and attributed this
fact to the activity of a new linear stability mechanism.
Subsequent work 2% 37.38.39 Jed to the formulation of a
theory of secondary instability for periodic equilibrium
motions in a plane channel based on Floquet systems.

There are four main results of this work: (i)
Three-dimensional secondary instability can lead to
different types of disturbances. Primary resonance with
the TS wave produces peak-valley splitting as the TS
amplitude exceeds some threshold. Subharmonic reso-
nance can occur at even smaller amplitudes. {ii) Calcu-
lated disturbance velocities and growth rates are con-
sistent with experiments. Three-dimensional modes
grow on a {ast convective time scale, typically by a fac-
tor of 100 within 5 cycles of the TS wave. (iii) Secon-
dary instability originates from the redistribution of
spanwise vorticity into streamwise periodic lumps near
the critical layer. Growth of three-dimensional modes
arises from combined vortex tilting and stretching. (iv)
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Analysis of the limit TS amplitude A — 0 reveals the
intricate connection between modes of primary and
secondary instability. This provides for the first time a
rational means for evaluating existing, and constructing
new models of weakly nonlinear interactions.

Encouraged by the results for channel flow, and
guided by the nature of the secondary instability
mechanism, Herbert 4 introduced approximations
which permit application of the theory to the full class
of classical stability problems, especially boundary
layers. Application of this Floquet theory of secondary
instability to the Blasius boundary-layer flow 41.42.43
provided results consistent and mostly in quantitative
agreement with the work of Klebanoff and co-workers !
and Cornelius ** on peak-valley splitting and with the
results of Kachanov & Levchenko 2% 30 on subharmonic
and combination resonance.

In this paper, we briefly describe the underlying
concepts of the Floquet theory of secondary instability.
From the general form of the disturbances we derive
special classes of instability modes and relate their for-
mal properties to the observations. Some numerical
results are given in order to characterize the parametric
dependence of the secondary growth rates. A com-
parison with hot-wire data on subharmonic instability
and peak-valley splitting is made. The patterps of
subharmonic modes in flow visualizations are repro-
duced by computer-animation tased on the theoretical
data 45

2. Formal Considerations

In our approach to secondary instability, we
recognize in step 2 of the above described transition
picture that the flow is no longer of the Blasius type
but experiences a modulation by the finite-amplitude
TS wave. In a coordinate system moving with the
phase speed of this wave, the flow can be considered as
almost steady and streamwise periodic. We follow the
standard procedure of linear stability and decompose
the velocity field v into a basic flow v, and distur-
bances v; that are sufficiently small for linearization.
Substitution into the Navier-Stokes equations and sub-
tracting the equations for the basic flow (which we
assume to be identically satisfied) provides the linear
stability equations

('}%Vz - %)"3 - {vav)vs

(va @)V == Ups.

In general, the basic low and its derivatives determine
the coefficients of the stability equations. In our case,
we can write the basic flow in the form

VZ(I’vyﬂt) = Vo(y) + Av,(z',y,l) ' (2)

where v, = vy(y) represents the Blasius flow, A the
amplitude of the periodic modulation, and v, a solution
of the Orr-Sommerfeld equation for a given set of
parameters. We normalize v, such that A is a direct

measure for the maximum streamwise rms fluctuation
(usually denoted as u',, ). All quantities are nondimen-

sional  using the outer velocity U, and
8, = (vL /U )"? for reference, where L is the dis-
tance from the leading edge. Consequently,

R = (Uy L v)'2. We change from the laboratory
frame to a Galilean frame moving with the TS phase
velocity ¢, . In this frame, the basic flow satisfies

vo{r,y)=volz +X;,y), 2z =z2'- ¢, t, (3)

where A\, = 27 /a, is the wavelength of the TS wave.

Obviously, this choice of the basic flow involves
some approximations that can be considered a generali-
zation of the parallel-flow approximation. The parallel-
flow assumption extends the local conditions at some
streamwise position z, to the range - o0 < z <oo. In
our case, we neglect not only the small transverse velo-
city and the streamwise variation of the boundary layer
profile, but moreover, the small (temporal or spatial)
variation of the amplitude A, and the distortion of the
TS velocity profile by nonlinear effects. Justification
for these approximations will be given below.

A look at the linear disturbance equations (1)
indicates a qualitative difference between the cases
A = 0and A 5 0. In absence of the TS wave, equa-
tions (1) form the basis of the classical theory of pri-
mary instability. Due to the independence of the basic
flow of t, z, and z, the normal mode concept can be
applied with respect to these variables. After some
rearrangement, this leads to the Orr-Sommerfeld equa-
tion for the velocity component v and to Squire’s equa-
tion for the vorticity component 1 normal to the plate.

For A % 0, we are faced with a system of par-
tial differential equations with r-periodic coefficients.
The normal mode concept can still be applied with
respect to z and ¢ and three-dimensional disturbances
can be written in the form

vi(z,y.zt) = e’ e V(zy). (4)

We consider the spanwise wave number § = 2r /), as
real, whereas ¢ = o, + 10, is in general complex.
The key step in the development of the theory of secon-

.dary instability is the identification of classes and forms

of V(z.y). In essence, insight into the streamwise
structure of the disturbances can be gained from the
Floquet theory of ordinary differential equations.
Beyond the periodicity of the coefficients, we exploit
the fact that the physical solution must be real, and
therefore any complex solution v, implies the existence
of a complex conjugate solution v{. Moreover, the sys-
tem of equations can be written in a form with real
coeffictents. In this case, Floquet theory suggests solu-
tions in the form

Vir.y)
V(r + 2X

c""\?(z.y).
) - Vi), (5)

where v - 5, + 175, is a characteristic exponent, and
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V is periodic in z with wavelength 2\, . Hence, we
can write vg in the form

vy = eate'nelﬁx

00 .

Y Valy)emr, (6)
m=-oc0
where @ = a, /2. The components of ¥, are governed
by an infinite system of ordinary differential equations.

Since the basic flow v, with wavenumber
a, = 2a provides coupling only between components
V., and Vv, this system splits into two separate sys-
tems for even and odd m that describe two classes of
solutions

v, = e%fe e, (z,y),
‘;I — 2 Gm(y)ci"'6', (7)
m gven
v, = e e ey, (2,y),
Gv = 2 om(y)ciméx. (8)
m odd

The periodic functions ¥, and ¥, obviously satisfy

Vilz + 2 y)=v,(zy),
\7,(:+2)\,,y)=\7,(z,y). (9)

Therefore, we denote v, as the fundamental mode,
associated with primary resonance, and v, as the
subharmonic  mode. originating from  principal
parametric resonance.

It is interesting to note that the two classes of
modes are analytically connected, since no restriction is
imposed on the value of ~,;. Replacing 7 in (7) by
v =17"+% ia and renumbering the terms in the
Fourier series leads to an expression formally equivalent
to (8). Nevertheless, it is convenient to distinguish the
two classes for the analysis of special cases as well as in
the numerical work. We also note that to within this
renumbering modes with v and v + ¢ 2k & are identical
for any positive integer k. Therefore, it is sufficient to
consider |v; [ < a. It is convenient to introduce the
following classification of modes:

¢ Fundamental modes: eq. (7) with y; = 0
e Subharmonic modes: eq. (8) with v, = 0
e Detuned fundamental modes: eq. (7) with 4; » 0
e Detuned subharmonic modes: eq. (8) with v; > 0

The rational behind this choice of notation is the
practical need for using truncated Fourier series that do
not allow for renumbering, and the even or odd number
of Fourier modes in symmetrically truncated series for
subharmonic and fundamental modes, respectively, as
will be discussed below.

The characteristics of the fundamental modes are
formally consistent with observations. The modes are
doubly periodic with wavelengths XA, and X\, as the
ordered pattern in the flow visualizations of Saric &
Thomas.3® The aperiodic term v, in (7) represents a

W I T TN o T Y N P T ¥ TP v yworTrrewr Ty

LE AL aia a e cla AL azd o T

spanwise periodic mean flow distortion (u) and a longi-
tudinal vortex system (vq, wg). The fact that this vor-
tex system is an integral part of the three-dimensional
disturbance and grows simultaneously with the fluctuat-
ing components is consistent with the observations of
peak-valley splitting. The aperiodic component is
absent from the subharmonic modes (8). These modes
are doubly periodic with 2\, and X\,, and invariant
under the transiation (z,z) — (z + X,,2z +X,/2), a
characteristic of the staggered pattern in visualizations
of subharmonic modes. In frequency spectra from a
laboratory-fixed probe, linear subharmonic modes pro-
duce peaks at odd multiples’ of the subharmonic fre-
quency but not at the fundamental frequency and its
harmonics.

The occurrence of two complex quantities, ¢ and
5, in the eigenvalue problem for secondary disturbances
leads to an ambiguity similar to that associated with
the Orr-Sommerfeld equation. Only two of the four
real quantities ¢,, 0, 7,, 7; can be determined; the
other two must be chosen. We have already identified
~y; as the detuning parameter that controls the
wavenumber content of the disturbed flow in the
streamwise direction. In a similar way, o is associated
with the frequency content of the flow. The real parts
o, and ~,, on the other hand, govern the growth of
the disturbance with respect to ¢ or r, respectively,
and are of prime interest in an analysis of sccondary
instability. It is important, however, to recognize that
spatial growth of disturbances in the streamwise direc-
tion relates to the laboratory frame z', not to the mov-
ing frame z. In continuing the classification of modes
of secondary instability, we distinguish

e Temporal (temporally growing) modes. In this case,
we assume 7, = 0 and consider o as the eigenvalue.
The temporal growth rate is given by o, , while o
can be interpreted as frequency shift with respect to
the TS frequency. Modes with o; = ~4;¢, travel
synchronous with the basic flow, where ~; is the
given detuning with respect to the wave number.

e Spatial (spatially growing) modes. Since spatial
growth is measured in the laboratory frame z', y,
z, We rewrite

e%te = cla_”')'c"', (10)
and choose o, = v,¢, in order to suppress tem-
poral growth effects. Hence, v, provides the spatial
growth rate in the laboratory frame while ~, is the
shift in the streamwise wavenumber. Detuning with
respect to the frequency is given by the value of
o, - v;¢,. Only in the case c¢f tuned spatial
modes can v be considered the complex eigenvalue
of the problem. Due to the occurrence of both o,
and 7, in the detuning parameter, the analysis of
detuned spatial modes is a rather intricate task. It
is of interest, though, since such modes have been
observed by Kachanov & Levchenko 2930




In general. detuned modes are associated with
combination resonance. If we consider for simplicity
the temporally growing modes, this can be immediately
seen when forming the physical solution that must be
real. Since 3; 5 0. the complex conjugate solution is
detuned by 5, and consequently the physical solution
contains wavenumbers m & £+ 5,. The sum of suitable

After proper rearrangement, the coeflicient func-
tions are governed by systems of equations with real
coeflicients. ¥ The solution however is only real for real
o. The case of real ¢ == o, is of particular interest
since synchronization between basic flow and distur-
bances offers an optimum chance for energy transfer,
and the principal modes of subharmonic and fundamen-

O

pairs of wave numbers matches the TS wave number. tal instability at larger amplitudes are indeed associated 3
with a real solution. Since the amplitude A appears
3. Numerical Aspects linear in the stability equations, real ¢ (A ) enables an .
The derivation of the equations for the Fourier inverse eigenvalue sear(‘hA for A(o). ie. the search~ for 4
coeflicients ¥, in {7). {®) is a straightforward but tedi- the y’alue_ of the “”.’p].“'Ude that ) produces a given :
ous matter. Simplifications of the equations arise for ampllﬁcgtlon rat(T Similar conclusions can be drawn A
the temporal tuned modes with 7 - 0. Moreover, the for spatially growing modes. v
temporal eigenvalue o appe.rs linear in these equa- Concerning the choice between temporal and spa-
tions tial growth concept, the si* ation is analogue to the pri- o
Primary and secondary stability problems are mary Stabilit_v. analysis. The temporal eigenvalue o "
numerically solved using a spectral collocation method appears ‘hnear in the equations. 'Therefore. spectra and "
with Chebyshev polynomials. This method converts single elgem{alues can be obtained by' standard pro- ;
the ordinary differential equations and boundary condi-  c¢dures of linear algebra. In the spatial formulation, by
tions into systems of algebraic equations. We prefer  the eigenvalue 5 appears up to the fourth power. d
the direct treatment of the boundary value problem Although .methods exist to obtain spectra in this case,
over shooting methods since we maintain access to the required computations  are rather demanding. X
<pectra of eigenvalues for temporally growing modes. Therefore: we have exploited the fact that neutral
The spectrum is extremely helpful for reliably identify- behavior is mde;}ent‘kﬂt of the chosen gro.th concept. »
ing the most relevant modes in different regions of the Parameter ’coml')matlon.s for neutral behavior, o, = 0, l’
multi-dimensional parameter space and for untangling bave been 'de““ﬁe_d using the‘temporal concept. Start-
their analvtical ronnections. ing from these points, the principal eigenvalue can be .
For 'boundarv layers, we obtain a finite domain by ;raced u§ing .the spatial concept. The local Proce(i.ure
. X . . . or spatial eigenvalues v rests on Newton iteration.
?;]m f:lrgr;bm;c %M;zmgimo) ).; yol/ E)y ;esy;:)e)cti::l?'t Although this procedure is more costly than tracing
ans s - . s == 1,0, 4 . : et :
The parameter y, controls the density of collocation .temporal eigenvalues, it is more convenu.:nt, for follow- b
o P ) ) ing the downstream development of disturbances of Y
points in the neighborhood of the wall. Only odd Che- fixed dimensional frequency and spanwise wavelength v
byshev polynomials are applied such that the boundary . . A N y P gth, Y
conditions for y — oc are automatically satisfied. Typ- a5 It occurs In expenments.
ically, J -- 30 collocation points are used, and y, is 4. Results ;
chosen to place half of the points within the displace- ] )
ment thickness of the boundary layer. For every (real In ;he following, we use thesfrequen?y parameter ,
or complex) function ¥, (y) in (7), (8), 2J + 3 (real or F - 10%a, "r;’/R' .and b. = 10>B8/R in ordt?r to
complex) unknowns have to be included into the homo- specify three-dimensional dnst}erances of fixed dimen-
geneous system of algebraic equations. In view of the sional frequency and spanwise wavel.ength as tffey j
size of the resulting systems, the truncation of the travel downstream. The key experiments P'.'OV‘de
Fourier series is crucial for the numerical work. details on different aspects of secondary instability at *
For subharmonic modes. the lowest possible trun- dlﬂ‘”enf frequencies: ] o "
cation is | m | < 1, which includes only ¥ , and ¥,. . f' - 58.8: hOt-'ere data on peak-valley splitting, &.
The lowest approximation for fundamental modes is Klebanoff et al. Q
I m | <2 and includes ¥_, Vo and ¥,. Detailed . F = 64.4: hot-wire data on peak-valley splitting,
numerical studies %3 have shown that the Fourier series Cornelius 44 ;
converge indeed rapidly, and the lowest truncation pro- . F 83: flow-visualizations of various modes, .
vides sufficient accuracy for any practical purpose. Saric & Thomas 33 By
The numerical work for tuned modes can be F 124- hot-wire data on subharmonic and ::
further simplified by exploiting that any complex solu- combination resonance. Kachanov & Levchenko o
tion v; implies a second solution vd. Moreover, only 2g, 30 =y
the sauare 37 of the spanwise wavenumber appears in Figure 1 relates the location of the vibrating ribbon {or
.‘hp euations such that the results for .7 and .7 are wire) and the range of Reynolds numbers studied in L
wentical these experiments to the stability diagram for Blasius 0
flow.  There 15 yet no set of hot-wire data available K
K
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that would allow for a comparison of subharmonic and
fundamental modes at fixed frequency.

T T T T T T
200 + -
F b .
¢ F=124
100 |- -
83
L 1 1 | | 1
0 400 800 R 1200

Figure 1. Stability diagram for the Blasius boundary
layer. The horizontal lines indicate the frequency and
Reynolds number range in the experiments.

Preference for lower frequencies in studies on
peak-valley splitting is likely due to the need for
stronger TS growth and larger amplitudes. The ampli-
tude growth curves for TS waves at frequencies
F = 124 and 64.4 are given in figure 2, and show the
essentially larger amplitude ratio for the lower fre-
quency. The growth rate of secondary modes, however,
depends on the absolute amplitude, and therefore the
curves in figure 2 become significant only for given ini-
tial amplitude A, or given disturbance background for
that matter.

5 T T T T T
In{l— - T
0
o -
F=124 83 58.8 ‘1
-3 _____L_,__,,A,L,,,\Lﬁ PO \,L__*_l_
300 900 R 1200

Figure 2. Amplitude growth curves for TS waves.

A systematic discussion of the parametrical
dependencies exceeds the scope of this paper. For
relevant amplitudes. A .- 0.005 say, the properties of
the principal. i.e. most amplified modes of temporal
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subharmonic or fundamental instability can be sum-
marized as follows:

. The eigenvalue o is real, i.e. secondary mode and
TS wave are phase-locked and travel at the same
phase speed.

. The growth rate o, is large in comparison with

the maximum growth rate of TS waves. Typi-
cally, secondary modes grow by two orders of
magnitude within a few TS cycles.

° Instability, ¢, > 0, occurs in a broad band of
spanwise wave numbers.

. The growth rate o, increases with increasing TS
amplitude A at otherwise fixed parameters.

. The growth rate o, increases with increasing
Reynolds number at otherwise fixed parameters.

. The growth characteristics of subharmonic and
fundamental modes are similar with the subhar-
monic being the most dangerous mode at low TS
amplitude levels.

The latter fact is due to a characteristic difference
between subharmonic and fundamental modes: funda-
mental instability, i.e. peak-valley splitting is a thres-
hold phenomenon and occurs only at sufficiently large
TS amplitudes. Subharmonic instability, in contrast,
can occur at arbitrarily small TS amplitudes due to
resonance of Craik’s!® wave triad. We note, however,
that growth of secondary modes is only observable and
leads only to transition if

. The initial amplitude of the three-dimensional
disturbance is sufficiently large.

. The conditions for growth persist for a sufficiently
long time or streamwise distance.

The role of the fetch for occurrence of subharmonic ins-
tability has been discussed by Saric & Thomas.33 It also
seems that the frequent observation of peak-valley
splitting is due to favorization of longitudinal vorticity
disturbances in wind tunnels with usually large contrac-
tion ratios. Computer simulations of boundary-layer
transition by Spalart & Yang 47 show that even at large
TS amplitudes pure peak-valley splitting cannot be
obtained from a uniform or random disturbance back-
ground.

4.1 Mechanism of Secondary Instability

The dramatic growth of three-dimensional distur-
bances at small TS amplitudes can be explained by the
parametric nature of the excitation. Guided by earlier
work on plane Poiseuille flow,25 the rapid development
of secondary modes and the underlying physical
mechanism can also be understood from a close look at
the periodic basic flow.

Figure 3 shows the streamlines of the flow (2) for
F - 124, R 606, and A = 0.02 in the wave-fixed
coordinate system. The center of the cat’s eye indi-
cates an extremum of the streamfunction located just




ro

Figure 3. Streamlines of the periodic basic flow at
F 124, R = 606, and A = 0.02. The marks at
y = 1.12 and y = 1.72 indicate the position of the
critical layer and the displacement thickness, respec-
tively.

outside the critical layer at y,. The associated vorti-
city contours are given in figure 4. Remarkable are the
high levels of vorticity near the wall that diffuse into
the flow. The viscous effects, however, extend only to
the neighborhood of the critical layer. For y > y.,
streamlines and isolines of vorticity are nearly parallel,
indicating essentially inviscid flow.3” A weak extremum
of vorticity occurs near the center of the cat's eye.
Therefore, the flow in this neighborhood resembles a
distributed, clockwise rotating vortex at the edge of the
viscous layer near the wall. As the amplitude increases,
this vortex strengthens and moves further into the
inviscid region.

/‘-—_—\\——.
- —//—‘_——\
4 ———'/-_/_’\
7‘“’?%
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L e ——
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2 4 A
o 1
Figire 4 Isolines of vorticity for the periodic basic

flow in figure 3.

The study of simplified theoretical modeis of a
single vortex in a viscous shear layer®® 19 provided
some of the features of peak-valley splitting. In more

-\*.\\-.'

f!" S laadne : .':.r:.'-:‘( ST

451

physical terms, the dynamics of such models has been
discussed in context with flow visualizations by Hama*®
and Wortmann.®® Wortmann considers the distributed
vortex tube in a two-dimensional flow as a salient
feature only in the presence of a spanwise, three-
dimensional disturbance. Owing to the surrounding
shear, any deformation of the tube initiates transport
processes which in turn enhance the deformation. He
concludes: “We have to expect a strong, exponential
growth of any three-dimensional perturbation once the
Reynolds number and wave amplitude of the Tollmien
wave establish a local vorticity peak of sufficient
strength near the critical layer * His arguments clearly
indicate the necessity of combined vortex stretching
and retrograde rotation of a bent vortex tube for the
exponential growth of three-dimensionality. This model
of peak-valley splitting has been verified by the formal
and numerical analysis of the vorticity dynamics by
Orszag & Patera.3 For a deeper understanding of the
various types of three-dimensional secondary instabil-
ity, however, it is crucial to recognize the streamwise
periodic nature of the flow and to consider a vortex
array instead of a single vortex. The TS wavelength
X\, introduces a new characteristic length scale into the
problem.

The vortical nature of the secondary instability
mechanism and the strong disturbance growth on a
convective time scale ultimately justify the approxima-
tions implied in the periodic basic flow (2). While non-
linear effects may change primary stability characteris-
tics through modification of the Reynolds stress, the
modification of the vorticity distribution at the ampli-
tudes of concern is indeed negligible. Computations of
Fasel & Hama (personal communication) show that the
two-dimensional field essentially maintains the u'-
profile of a linear TS wave even at amplitudes of
A = 0.1. The weak nonparallelism of the boundary
layer and the developing TS wave blurs some detail at
the onset of secondary instability but can be neglected
in the situation of practical interest where strong
growth of the three-dimensional modes occurs.

4.2 Peak-Valley Splitting

In order to verify the theory of secondary instabil-
ity, a detailed analysis of fundamental modes has been
performed?? for the experimental conditions of
Klebanoff.! This analysis revealed two discrepancies.
First, the streamwise growth of the TS wave in the
experiment is not in agreement with the predictions of
linear stability theory. Dr. Klebanoff expressed that at
the time of this experiment emphasis was on a descrip-
tion of the nonlinear and three-dimensional phenomena
in transition, and no special eflort was made to repro-
duce the linear TS characteristics that were already
verified in the work of Schubauer & Skramstad.®
Second, our results indicate that subharmonic instabil-
ity should have prevailed in this experiment if the
background amplitudes for fundamental and subhar-
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monic modes were equal. In fact, the experiments were
conducted in a similar region with respect to the stabil-
ity diagram in figure 1 as later studies 3 on subhar-
monic resonance. The experimental arrangement, how-
ever, especially the spanwise spacers on the plate sur-
face beneath the ribbon enhanced spanwise periodic
mean-flow variations and disturbances of the longitudi-
nal vortex type that directly participate in the resonant
mechanism of peak-valley splitting. Our theoretical
predictions are consistent with the results of recent
computer simulations of transition in a temporally
growing boundary layer by Spalart & Yang.¥7
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Figure 5. Growth rate of three-dimensional distur-
bances as a function of the spanwise wavenumber J for
F =588, R = 950, and 4 == 0014 Theory: (a)
subharmonic, (b) peak-valley splitting. Computation-
(o) subharmonic, (x) peak-valley splitting.

The dependence of the temporal fundamental and
subharmonic growth rates o, on the spanwise wave
number 3 is shown in figure 5. The parameters are
chosen to match the experimental conditions.! Theoret-
ical and computational results are very similar and
both show the stronger amplification of the subhar-
monic mode. The systematic quantitative differences
can be attributed to approximations contained in the
theoretical and computational work.

Conversion of the temporal growth rates ¢, into
spatial growth rates v, = ¢, /¢, and integration in
the streamwise direction provides

R
wBEL o Zrae (11)

BO R, Te

for the amplitude ratio B By of the three dimensional
disturbances, where B, = B(R;,) and R, 1s the Rey-
nolds number at the onset of secondary instability for a
given value of A, Comparison of the amplitude ratios
for fundamental and subharmonic modes indicates that
the initial amplitudes B, for peak-valley splitting in the
experiments ! must have exceeded those for subhar-
monic instability by more than an order of magnitude.

Disregarding this bias, the streamwise variation of the
u'-values at peak and valley is in good qualitative
agreement with the observation.

5] b x g

Figure 6. Distribution of u' across the boundary layer
for ' - 53R b 0243, and R - 960. Experiment:
{o) peak. (x) valley. Theory (a) peak. (b) valley.

Once the amplitudes 4 and B at a given stream-
wise position are established, one can analyze the distri-
bution of the disturbance velocities in the spanwise
direction and normal to the plate  Figure 6 shows the
u'-distnbutions across the boundary layer at peak and
valley for conditions close to station B in the experi-
ments A similar comparnson at station C indicates
that nonhnear three-dimensional  effects  become
significant somewhers between stations B and C.ie  at
maximum peak an:phtudes of w! = 577 Essential
agreement hetween theoretical and experimental resuits
1s also found for the spanwise component w, of the
mean longitudinal vortex system. as shown in figure 7,
and for the mean flow at peak and valley

A new set of experimental data on peak-valley
splitting has been recently obtained by Cornelius 44 Not
only are the theoretical characteristics of the TS wave
reproduced but data are given for different spanwise
wavenumbers.  We currently perform a theoretical
analysis for the conditions of this experiment. The
results wiil he published elsewhere

4.3 Subharmonic Instability

Detailed hot-wire data on the subharmonic route
to transition have been reported by Kachanov &
Levchenko 293 Their theoretical explanation of the
observations is closely tied to the studies of Craik’s
model by Volodin & Zelman ®! although the measured
wave angle is way off the triad resonance conditions. A
detailed analysis of their experimental conditions based
on the Floquet theory of secondary instability 4! has
shown that their results can be well understood in the
light of the broad-band nature of secondary instability.

Figure & shows the vanation of the subharmonic
growth rate o, with the wavenumber parameter b for
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Figure 7. Normalized distribution of the spanwise com-
ponent of the mean-flow disturbance across the boun-
dary layer at F = 588, b = 0.243, and R = 980.
( )} Theory, (o) experiment at station C.
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Figure 8. Subharmonic growth rate o, as a function of
the wavenumber § for F = 124, R; = 606.

different TS amplitude levels at branch Il for F = 124.
At small amplitudes, considerable growth rates are
obtained in a narrow band of wave numbers that
centers around the wave number b = 0.18 for Craik
resonance. Instability at this rather small wavenumber
is responsible for the selection of subharmonic distur-
bances with large spanwise wavelength in experiments
at low TS amplitude levels.33 As the amplitude
increases, the band of dangerous wavenumbers extends
to larger values of b, and the maximum of ¢, shifts to
b = 028 at A = 0.01. The observed value 6 = 0.33
is well within the range of strong instability. The sharp
cutoff of the instability at low wavenumbers indicates
that subharmonic instability in the Blasius flow always
leads to three-dimensionality. The two-dimensional
mode of vortex pairing 2 53 in inflectional mean flows
occurs only at very large amplitudes of the periodic
modulation.

453

10

A,B

10

i
700

10 600

400 500
Figure 9. Amplitude growth with the Reynolds number
R for (A) TS wave with A, = 0.0044, (B) subharmonic
mode with By = 1.86 X10°5, b = 0.33. ( J

Theory, (o) experiment.

Simultaneous integration of the spatial growth
rates of TS wave and subharmonic mode with initial
amplitudes matching the experimental conditions pro-
vides the data shown in figure 9 together with the
measurements. Except for the region of transient
behavior downstream of the ribbon in the experiment,
the streamwise variation of the subharmonic amplitude
is well predicted by the theory. Earlier results using
the temporal growth concept and the transformation
(11) led to very similar results. A detailed comparison
of spatial growth rates and transformed temporal rates
5 indicates that the restrictions of Gaster’s transforma-
tion do not apply to secondary instability. In fact, the
close relation between temporal and spatial growth of
secondary disturbances could explain the successful
modeling of experiments on transition by temporal
computer simulations.

Beyond the growth rates, th= theory also repro-
duces the spatial structure of the subharmonic distur-
bances. At fixed distance from the plate, the spanwise
variation of the subharmonic rms fluctuation u'y is pro-
portional to |cosfz | with 180° phase jumps &t the
positions where cosfz 0. The distribution of u';
across the boundary layer is compared with experimen-
tal data in figure 10. Similar agreement is obtained for
the phase of the disturbance velocity. Qualitative
agreement also extends to the small higher Fourier
components of the subharmonic disturbance as shown
in figure 11. The deviation near y = 0 is likely to ori-
ginate from using the hot-wire probe very close to the
wall.

The experiments 30 with a natural, i.e. uncon-
trolled background of three-dimensional disturbances
exhibit no pure subharmonic resonance but a broad
peak of spectral components in the neighborhood of the
subharmonic frequency. The band width of this reso-
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Figure 10. Normalized u’-distribution of the subhar-
monic mode at F = 124, R = 608, A = 0.0122, and
b = 0.38. ( ) Theory, (o) experiment.

1

Figure 11. Normalized u'-distributions of the stbhar-
monic components with 3¢/2 and 5&/2 at F = 124,
R =606, A =001, b =033 ( ) Theory,
{0,x) experiment.

nance was studied by exciting with the vibrating ribbon
a second frequency which differed by up to 50% from
the subharmonic frequency. All cases produced strong
combination resonance. This fact is consistent with the
results of our temporal analysis of detuned modes. The
eigenvalues o are shown in figure 12 for modes with
wavenumbers between & and 24 = «a,.

The growth rate o, exhibits a broad maximum
near &, such that detuned modes with & + v;, v; ¢ 0
experience almost the same growth as the subharmonic
mode. Reality of the physical solution requires the
presence of the complex conjugate mode with
wavenumber & - 4; and equal amplitude. In the
experiments, this fact is reflected by the appearance of
two sharp spectral components of the same amplitude
to both sides of the subharmonic frequency. The
growth rate of the fundamental mode is relatively small
for these parameters. However, the relation between
subharmonic and fundamental growth rate may drasti-
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Figure 12. Growth rate o, and frequency shift o, for
detuned modes at F = 124, R = 606, A = 0.01,
B = 0.33. Subharmonic and fundamental modes
correspond to v; = 0 and v, = &, respectively.

cally change if the parameters are varied. Figure 12
also shows that only the tuned modes travel synchro-
nously with the TS wave, 0; = 0. Detuned modes are
always associated with a low-frequency modulation of
the disturbance field. This result may be related to
observations of low-frequency components and a slow
spanwise meandering of the disturbed flow in experi-
ments with a natural disturbance background.

5. Conclusions

The Floquet theory of secondary instability
reveals that three-dimensional disturbances in the early
stages of transition originate from parametric instabil-
ity of » basic flow that is periodic in space and time.
The .- r shortcomings of weakly nonlinear models
and methods are circumvented and moreover means are
provided fot identifying relevant interactions for con-
structing new models.

The two distinct classes of subharmonic and fun-
damental modes are found to be special cases of a gen-
eralized class of secondary disturbances. The distur-
bances may grow in space or time. Comparison with
experimental data verifies the capability of the theory
to predict growth rates and spatial disturbance field up
to the stages immediately preceding breakdown and
transition.

The mechanism of secondary instability involves
combined tilting and stretching of an array of distri-
buted vortices in a surrounding shear flow. By its vort-
ical nature, the stage of three-dimensioinal evolution
bridges the gap between the slow viscous time scale of
the TS instability and the fast convective scale of the
transition process.
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SECONDARY INSTABILITY
OF BOUNDARY LAYERS

Thorwald Herbert

Department of Engineering Science and Mechanics, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061

1. INTRODUCTION

The problem of transition from laminar to turbulent flow in viscous boundary
layers is of great practical interest. The low skin friction coefficient of laminar
boundary layer flow is very attractive to those who lay out the engines or pay the
fuel for high-speed vehicles such as airplanes. However, the low mixing of fluid
properties such as chemical species, heat, or momentum may be intolerable for
others who design these engines or cope with the danger of separation in adverse
pressure gradients; they may clearly prefer a turbulent state of the flow. There-
fore, it would be highly desirable to at least predict, if not to control, whether
the flow under consideration is laminar or turbulent. The tremendous efforts of
decades of intense research, however, have been to little avail (Reshotko 1976).
The empirical e™-criterion is still the standard tool in engineering practice,
although it is known to ignore essential ingredients of the physics of transition
and therefore may dangerously mislead if used beyond the supporting data base.
Numerical transition simulations have gained reliability in reproducing the transi-
tion process in sufficient detail to extract information unobtainable from labora-
tory experiments. However, the inherent assumptions of streamwise periodicity
and temporal growth of the boundary layer, in addition to the uncertainty of ini-
tial conditions prevent predicting transition in practice. Hence, theory still holds
an important place in identifying inherent mechanisms and structures of the
transition process and in explaining otherwise unintelligible observations. The
past decade saw some important progress of stability theory, slow or fast,
depending on the reader's judgement.

Because of the multitude of identified and concealed effects on the response of
the boundary layer to external forcing, the development of a general theory of
transition is yet an utopia. In noisy environments, e. g. in turbomachinery,




turbulent boundary-layer flow develops virtually ‘out of the blue'; the intermedi-
ate unsteady but still laminar motions accessible to stability analysis are
bypassed (Morkovin 1969). For large areas of practical interest such as vehicles
moving through the ocean or atmosphere, however, the environment is relatively
‘quiet’, i. e. the external disturbances produce only small spectral components
that match the scale of natural oscillations in the boundary layer. The detailed
mechanism of how the boundary layer ingests external acoustic waves or tur-
bulent fluctuations in a given geometry with inadvertent roughness and vibra-
tions of the solid boundary is denoted as receptivity. The study of this recep-
tivity issue has recently seen major progress (Goldstein 1985; Tam 1986) but will
not be addressed here. We concentrate on the situation after receptivity has
established a low level of disturbances inside the boundary layer. Initially, the
amplitudes cf all spectral components are assumed sufficiently small for neglect-
ing nonlinear modifications to the mean flow. In this case, the initial response of
the boundary layer to disturbances is governed by linear equations and can be
studied for isolated spectral components. We further restrict our attention to the
simplest and best understood case of two-dimensional boundary layers along
essentially flat surfaces. The issues of centrifugal instability with respect to
Gortler vortices, cross-flow instability in three-dimensional boundary layers, and
the wealth of interactions between the various modes of instability will be briefly
reviewed in section 3.3.

TS WAVES The initial stage of linear instability, henceforth denoted as primary
instability, can be roughly predicted using the Orr-Sommerfeld equation for tem-
porally growing disturbances in a locally parallel low. Earlier doubts about vali-
dity and relevance of Tollmien's (1929) theoretical results for two-dimensional
traveling waves and the calculations of growth rates by Schlichting (1933) were
swept away by the convincing experiments of Liepmann (1943) and Schubauer &
Skramstad (1943/1947). The disturbance background in the latter experiments
was kept extremely low and small two-dimensional oscillations were introduced
by a vibrating ribbon. It has become custom to use such a biased, or controlled
background in experiment and computation. We should remain aware that these
studies are launched from a simplified model of the natural, i. e. uncontrolled and
unknown noise that causes instability and transition in real life. Although
Squire’'s (1933) transformation highlights the stronger instability of two-
dimensional waves, oblique waves or streamwise vortices cannot be considered
irrelevant. The natural background must be viewed as an irregular pattern of
three-dimensional wave packets with nonuniform spectral content. Moreover, the
study of isolated spectral components is only a valid concept as long as nonlinear
coupling can be ignored. With this in mind, we will adopt for the following the
controlled background and primary instability with respect to two-dimensional
traveling TS waves as the starting point for the theoretical analysis of the subse-
quent steps toward transition.

The quantitative prediction of growth rates and velocity distributions for TS
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1 waves can be improved by considering spatially growing waves (Gaster 1962) and
‘-'.-;-_ﬁ accounting for the streamwise variation of the boundary layer (Bouthier 1973;
"3; Gaster 1974; Saric & Nayfeh 1977). The distinction between temporal and spa-
C tial concept slightly changes the total streamwise growth but provides a common
‘ neutral curve. This curve (see Figure 8 below) outlines the region of instability in
vy the frequency-Reynolds number plane. Since the Reynolds number depends on
o the distance from the leading edge. the neutral curve marks for each suitable fre-
b2 quency the region of growth by two streamwise positions, branch I and branch L
. The nonparallelism moderately enlarges this region and enhances the growth,
P which improves the agreement with experimental data.

3

The characteristics of finite-amplitude TS waves have been studied both with
perturbation methods (Itoh 1974: Herbert 1975) and by numerically solving the
Navier-Stokes equations (Fasel 1976). At the low amplitudes of concern, how-
ever, there is no remarkable effect of nonlinearity on disturbance growth or velo-
city distribution.
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'\-;: From a qualitative point of view, the most significant effect of TS waves is the
-:.’_f.:-'_' breakup of the uniform flow in streamwise direction characterized by the redistri-
':"_- bution of spanwise vorticity into periodic concentrations near the critical layer
N where wave speed and mean velocity coincide. Downstream of branch I, the

e waves grow on a slow viscous scale and decay once they pass branch II of the
neutral curve. The challenge then is to find out how these harmless two-
. dimensional waves of large wavelength are related to the violent three-
e dimensional. small-scale, and high-frequency motion that is commonly denoted as
turbulence. A partial answer to this question will occupy the main part of this
review,

-7 One more remark seems to be in place. Research on transition has historically
- been full of contradictions and sudden changes in views and trends that often
:::-: hampered progress (see the section "'Some Lessons from History'', Morkovin
~Ts 1969). Different reviews on shear flow stability may have little in common and a
o zero-overlap of cited literature (e. g. Maslowe 1986). This curious fact illustrates
BN the many facets of the overall problem., the multitude of views, concepts and
methods. and the need to remain open-minded. [t also grants me the right to

} . present my own view supported by a selection of references that [ know is far
L from complete.,

L 2 A critical evaluation and interpretation of the 1983 state-of-the-art has been
e given by Morkovin (1983, 1985). The latter reference contains an extensive list of
: - related literature.

NN 2. EARLY WORK AND RECENT PROGRESS

»

- [n retrospect. the tortuous route to our current perception is astonishing. For
‘\'v-_ twenty vears, conflicting yet correct experimental views of the early stages of
. transition were never clearly discerned nor reconciliated. Research by different
oo groups and with different techniques applied to the same problem were virtually
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}_}' considered separate issues. Most theoretical work was guided by one single

‘j study: the detailed hot-wire data of Klebanoff et al (1962) on “‘the three-

N dimensional nature of boundary-layer instability”. This paper is in fact very

appealing to the theoretician.

o

'- . .

o 2.1 FEarly Observations

o

RS

<, VISUALIZATION One of the first clear observations of the fate of growing

v (axisymmetric) TS waves is the smoke photograph of the flow over an axisym-

‘.1: metric body shown in Figure 1. This photograph was taken by F. N. M. Brown

%Y at Notre Dame as early as 1957 but barely published in the open literature

:;'._“: (Mueller 1987, to appear). I.Jat'er work in Brown's facility (Knapp & Roache

oo 1968) revealed two clearly distinguished arrangements of the A-shaped smoke
accumulations (termed ‘‘trusses”) which were characterized as staggered or

o aligned in rows. In natural transition at zero pressure gradient, the staggered

.j:‘_. arrangement dominated. while adverse pressure gradients, and even more forcing

by sound, favored the alignment in rows. Knapp & Roache concluded ‘“‘that any
b condition which causes the two-dimensional waves to amplify more slowly’ will
o enhance the tendency toward the staggered arrangement. The qualitative
difference of the staggered pattern from the observations of Klebanoff et al (1962)

::; was not recognized. The trusses were attributed to concentrated vorticity and
I their development and breakdown discussed in some detail. The qualitative
j':_:' changes in the A pattern by an adverse pressure gradient are like those recently
o observed in the decelerating boundary layer on a flat plate (Gad-el-Hak et al
1984). More recent visualizations of staggered and aligned A's are shown in Fig-
o ures 2 and 3. respectively.
:::?_: The A-shaped structures were also observed by Hama et al (1957) in the flow
~ of water over a flat plate. A trip wire was used to create initial two-
dimensionality. Besides the flow photographs, the discussion of the dynamics of
) vortex filaments in a shear flow is intriguing. In later work, Hama & Nutant
o~ (1963) used hydrogen bubbles in water to visualize what they denoted as A vor-
oA tices. The observations were supported by an analysis of the dynamics of a vor-
o~ tex line under three-dimensional disturbances (Hama 1963). The A's were aligned
'{:, in all cases.

- Using techniques similar to those of Hama & Nutant. a detailed phenomeno-
e logical description of single trusses or A vortices was given in the movie
S “Tollmien-Schlichting Waves and Beyond” by Wortmann (1977), although the
iy narrow water tunnel prevented identification of their arrangement. Similar to
s Hama. Wortmann (1981) modeled the generation of A vortices in terms of com-
- bined tilting and stretching of a disturbed vortex line in a surrounding shear flow.
A The perception of the A’s as vortices was strongly supported by the tendency of
‘e the lighter-than-water bubbles to concentrate on the axis of a swirling flow.
T Although the relation between the A-shaped accumulations of fluid markers and
'_4 the vorticity field has been a matter of controversy, the name A-vortices sustains
.‘\';J:
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e
R :*OT-WIRE DATA Klebanoff & Tidstrom (1959) and Klebanoff et al (1962) per-
'._ formed detailed hot-wire surveys of the three-dimensional stage of transition.
e The earlier experiment~ adopted the vibrating ribbon technique but suffered from
AN the unrest of the three-dimensional phenomena. Spanwise modulations occurred
o with a specific wavelength A\, while the phase changed erratically with respect to
N a fixed hot wire. In the later work, the spanwise phase was controlled by strips
») of scotch tape underneath the ribbon spaced according to the wavelength found
'_‘_::::. in the earlier experiments. The repeatability of the signals and careful selection
:" of what to measure in order to prove or disprove existing theories and concepts
-7 led to a treasure of data that has been exploited uncounted times. However. the
N experiments were focused on the qualitative rather than quantitative features of
the nonlinear development. No effort was made to tune the facility to reproduce
A the quantitative characteristics of TS waves as predicted by theory.
'J-::.:: At sufficiently low amplitude, TS waves of frequency f/ and wavelength X,
'_f'_{.‘ grow and harmlessly decay in the downstream direction. At larger amplitude,
e however, a three-dimensional structure evolves whenever the TS amplitude A
C N exceeds a threshold value of typically 1% of the free-stream velocity U, (A
e denotes the nondimensional maximum streamwise rms fluctuation,
,::::_,‘ A = u', /U,). This structure is characterized by spanwise alternating peaks
j::-:} and valleys, i. e. regions of enhanced and reduced amplitude. A system of
o streamwise vortices develops simultaneously with the peaks and valleys. The
( growth rate of the wave at the peak positions is much larger than the original TS
o growth and leads rapidly to the formation of localized high-shear layers at the
::: ) peak positions. The periodicity of the flow is consistent with the visualizations of
S aligned A vortices. The highly inflectional instantaneous velocity profiles become
QO unstable with respect to high-frequency disturbances that cause spikes in the
";" hot-wire signals. The onset of spikes initiates the ultimate breakdown of the
; . laminar flow into turbulence. The development of three-dimensionality up to the
A appearance of spikes occupies about five TS wavelengths, while onset of spikes
o and breakdown occur within one wavelength. The virulent disturbance growth in
::'.'_-' the three-dimensional stage is in remarkable contrast to the slow TS growth on a
s viscous time scale.
iy Other experiments with controlled TS frequency and spanwise wavelength
NN were carried out by Kovasznay et al (1962) with various configurations of multi-
:'f":: ple hot wires. The details of the development were not as clearly revealed as in
<:j the study by Klebanoff et al. There evolved, however, a general consensus on the
N various stages of boundary layer transition (Tani 1969) which stimulated and
L guided theoretical work for almost two decades. The equi-shear contours
recorded by Kovasznay et al are still a benchmark for the verification of com-
: f-: puter simulations of transition.
, THE THREE-DIMENSIONAL STAGE The sequence of events from onset of
.
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primary instability to turbulence has often been reviewed. Many of the descrip-
tions need revision in today's perspective for the findings of Knapp & Roache
(1968). In addition, one needs to recall the peculiar conditions of the supporting
controlled experiments. Here, we focus on the stages that succeed the onset of
TS waves and their slow growth to amplitudes of the order of 0.5% to 1%. At
this level, three-dimensionality occurs with a spanwise scale similar to the TS
wavelength, A\, ~ X, , but in a nonunique manner. At lower amplitudes, three-
dimensionality produces staggered patterns of A vortices that at larger amplitude
are replaced by a virtually mixed type and at even larger values by an aligned
pattern of A vortices. This aligned pattern is consistent with peak-valley split-
ting.

The three-dimensional disturbances grow dramatically. Nonlinear deforma-
tion of the flow field produces embedded high-shear layers associated with
inflectional instantaneous velocity profiles. Small-scale, high-frequency velocity
fluctuations (spikes) appear owing to wrinkling of the high-shear layers and
herald the onset of irregular motion or breakdown of the laminar flow.

2.2 Early Theoretical Work

WEAKLY NONLINEAR MODELS Numerous attempts have been made to
explain the observations of Klebanoff et al (1962) by low-order perturbation
analysis of wave interactions. The interactions were modeled by a composite of
Orr-Sommerfeld modes with different wave vectors (a,, ;) in the plane spanned
by streamwise and spanwise direction. Two groups of models can be dis-
tinguished. Nonresonant models consider the observed wavelength as a given
parameter and study the superposition of a TS wave (a, 0) with two oblique
waves (a, + J) (Benney & Lin 1960; Nakaya 1980) or with a longitudinal vortex
mode (0, J) (Herbert & Morkovin 1980). Stuart (1962) criticized the Benney-Lin
model because the different wave speeds should cause a slow phase change
between the waves, which would contradict the observations. Itoh (1980) has
shown that nonlinear synchronization of the waves may occur in plane Poiseuille
fow. In boundary layers, however, the calculation of the mean flow distortion
and longitudinal vortex components inherent to both models suffers from the
nonparallelism of the basic flow (Herbert & Morkovin 1980). Neither the TS
interaction with oblique waves nor with longitudinal vortices has been capable of
fully reproducing the characteristics of peak-valley splitting.

The second group of models (Raetz 1959; Craik 1971) exploits resonance
between Orr-Sommerfeld modes for selected spanwise wave numbers + J°. The
prototype of these models is Craik's resonant triad. This triad consists of the TS
wave (a. 0) and two subharmoni¢ oblique waves (a/2, + J°) with twice the
wavelength A, of the TS wave. Craik found resonance for the experimental con-
ditions of Klebanoff et al (1962) at a frequency of 145 Hz, but his results became
subject to criticism since peak-valley splitting is not associated with subharmonic
waves. The discovery of subharmonic signals in boundary layer transition

............
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(Kachanov et al 1977) revived the interest in Craik’'s model. Nayfeh & Bozatli

r‘_;f-' (1979) found subharmonic resonance at amplitudes of 20% which by far exceed

;:: the observed values and may strain the validity of a low-order perturbation
y analysis.

The weakly nonlinear theory suffers from two shortcomings, the first of which

"\ is common to all perturbation methods when applied at a finite value of the per-

. .} turbation parameter. Low order of truncation compromises the judgement

s

i £

whether this finite value is ‘sufficiently small’ for rapid convergence of the pertur-
bation series and accurate results. The second problem is the lack of reliable
methods for constructing the model of a vaguely known physical phenomenon, i.
e. to find the right pieces to assemble the puzzle. Intuition alone cannot secure
the relevance and completeness of the modes chosen to interact.
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AN OUTSIDER Beginning in 1968, L. M. Maseev published a series of reports of
the Engineering Institute for Railway Transportation in Moscow. The first report
(Maseev 1968a) was entitled ‘‘Secondary Instability of Boundary Layers’ - like

E.:r_.; this article. Two pages in English translation (Maseev 1968b) sketched lengthy
r‘_'_'.-_I' equations derived with Kantorovich’s method. A suspicious solution procedure
o provided reasonable thresholds for the occurrence of longitudinal vortices (Figure

4) in the experiments of Klebanoff et al (1962) and near the critical Reynolds
number. L. M. Maseev never answered my letters, nor could I find him in Mos-
cow. He must have been the first to realize that peak-valley splitting, not the
spikes as thought by Klebanoff et al, are produced by secondary instability and
that this instability originates from parametric excitation in a periodic flow, not
from spanwise differential amplification of the TS wave.

2.8 Recent Progress

EXPERIMENTS The experiments of Nishioka and co-workers (1975, 1980, 1981)
on stability and transition in plane channel flow are a milestone in transition
research. Much pioneering theoretical work has been done on the nonlinear sta-
bility of this strictly parallel low that allows a clean mathematical treatment.
For a long time, this theoretical work had been overshadowed by the experimen-
tal fact of low subcritical transition. Nishioka et al were the first to obtain lam-
inar channel low at supercritical Reynolds number and to verify the basic results
of linear and nonlinear stability analyses. In this way, they also verified the
methods used for nonlinear studies. Moreover, they found that transition in
channel flow follows the same steps as in boundary layers, and hence established
channel flow as a sensible prototype for transition analysis in wall-bound shear
Hows.

The exchange of ideas at the AGARD Meeting 1977 in Copenhagen and the
[UTAM Symposium on Laminar-Turbulent Transition 1979 in Stuttgart spawned
a new generation of boundary-layer experiments. A survey of these efforts has
been given by Thomas (1988). Kachanov et al (1977) were the first to observe a
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broad peak of near-subharmonic signals in spectra of hot-wire data. More
detailed measurements with lower-than-before ribbon excitation (Kachanov &
Levchenko 1982, 1984; Kachanov et al 1985; Saric et al 1984) and flow visualiza-
tions (Saric & Thomas 1984) soon led to a more precise and extended picture of
the transition process.

Most notable,  perhaps, was the rediscovery and apprehension of the non-
uniqueness of the early three-dimensional stage of transition. Depending on
minute changes of the level of ribbon vibration at otherwise fixed conditions, the
aligned arrangement of A vortices was observed to change into the staggered
arrangement, accompanied by changes in the spanwise wavelength. The spanwise
wavelength of the three-dimensional phenomena was earlier believed to be a
repeatable characteristic of the transition process (Klebanoff et al 1962; Anders &
Blackwelder 1980). For the first time, Thomas & Saric (1981) associated the
staggered arrangement of A vortices with subhkarmonic hot-wire signals: the sta-
tionary hot wire records the same conditions for every other wave.

Kachanov & Levchenko (1984) provided controlled conditions by stimulating
the (two-dimensional) ribbon with the TS frequency f, and a superposed lower
frequency f = f,/2+ Af . For Af = 0, they substantiated the phase syn-
chronization between TS wave and subharmonic wave as required for Craik’s
resonant triad. However, the wave angle § = tan™!(\, /\,) was different from
the prediction for triad resonance. For Af $ 0, two peaks at frequencies
f1/2 £ Af of nearly equal strength appeared in the spectra.

COMPUTER SIMULATIONS Advances in computers and computational
methods enabled rapid progress in transition simulations for boundary layers
(Murdock 1977; Wray & Hussaini 1980) and channel flow (Orszag & Kells 1980;
Orszag & Patera 1981; Kleiser 1982) under controlled conditions. The wealth of
information concealed in the computer output can be extracted with relative ease
which is not true of the data obtained in laboratory experiments. The work on
boundary layers suffers from the inability to specify proper conditions for the
outflow at the nonphysical downstream boundary of the computational domain.
Therefore, transition simulations for boundary layers consider the temporal
development of the flow in a spatially periodic box. Surprisingly, computational
results are strikingly similar to the experimental data up to the stage where
numerical and experimental resolution becomes insufficient. The artificial tem-
poral growth, however, prevents prediction of the transition location - disappoint-
ing some euphoric hopes.

REVISED CONCEPTS In paraliel with the gathering of new observations,
Blackwelder (1979) and Herbert & Morkovin (1980) questioned the traditional
transition picture. Earlier (Klebanoff et al 1962), the occurrence of three-
dimensionality had been attributed to spanwise differential amplification of TS
waves, while the onset of spikes was considered to arise from secondary instabil-
itv. This latter view had often been reiterated and gained trust from theoretical
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work (Landahl 1972). The revised picture considered the onset of three-
dimensionality as manifestation of secondary instability. Herbert & Morkovin
(1980) suggested that three-dimensional disturbances originate from parametric
excitation in the streamwise periodic flow created by the finite-amplitude TS
wave.

PARAMETRIC INSTABILITY Orszag & Patera (1980, 1981) attributed the
exponential growth of small three-dimensional disturbances in their simulations of
peak-valley splitting in a plane channel to a linear stability mechanism and
analyzed the instability of large-amplitude stable equilibrium states in a plane
channel based on a Floquet system. At the same time, Herbert (1981) studied the
instability of (two-dimensionally unstable) equilibrium motions at lower ampli-
tudes in the experimentally relevant range of 0 < A < 0.05. Besides peak-
valley-splitting modes of opposite symmetry, Herbert (1983a) found subharmonic
modes, although Craik's triad is inactive in plane channel flow owing to adverse
symmetry of the wave motion. The universality of secondary instability for vari-
ous shear flows was shown by Orszag & Patera (1983).

The main results of this work are as follows: (i) Three-dimensional secondary
instability can lead to different types of disturbances. Primary resonance with the
TS wave produces peak-valley splitting as the TS amplitude exceeds some thres-
hold. Subharmonic resonance can occur at even smaller amplitudes. (ii) Calcu-
lated disturbance velocities and growth rates are consistent with experiments.
(ii1) Secondary instability originates from the redistribution of spanwise vorticity
into streamwise periodic lumps near the critical layer. Growth of three-
dimensional modes arises from combined vortex tilting and stretching. (iv) The
limit 4 — O reveals the intricate connection between modes of primary and
secondary instability. This connection provides for the first time a rational means
for evaluating existing and constructing new models of wave interaction.

e el & Bkt oo A

APPLICATION TO BOUNDARY LAYERS Guided by the nature of the secon-
dary instability mechanism, Herbert (1983b) introduced approximations which
permit application of the theory to the variety of classical stability problems,

o especially to boundary layers. Application of this Floquet theory of secondary
W instability to the Blasius boundary-layer flow (Herbert 1984, 1985; Herbert et al
1986) provides results consistent and in good agreement with the work of
" Klebanoff et al (1962) and Cornelius (1985) on peak-valley splitting and with the .
$’j results of Kachanov & Levchenko (1984) on subharmonic and combination reso- -
nance. ;
o
ﬁ UNBIASED COOPERATION The progress during the past decade has been -

achieved by individual efforts. This progress had not been possible, however,
- without the open discussions between those involved to the extent that priority
N questions are at times difficult to reconcile. Cooperation spanned experimental,
theoretical, and computational work performed by researchers from USA. USSR,
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:55 Europe, and Japan. Studies of plane Poiseuille flow by Nishioka et al (1984),
'\-: May & Kleiser (1985), and Singer, Reed & Ferziger (1986) supported the develop-
S ment of the theory for boundary layers. Boundary-layer experiments directed by
- V. Ya. Levchenko, V. V. Kozlov, W. S. Saric, A. S. W. Thomas, K. C. Cornelius
't'_ and T. C. Corke (1987, to appear), computations by P. R. Spalart, and the
:-\.r development of the theory by Th. Herbert (see the text for references) were per-
:t"" formed in a fruitful atmosphere of open exchange.
o
oy 3. FLOQUET ANALYSIS
,'\-::: Key to the successful analysis of secondary instability is the observation that at
:;ﬁ;: the onset of three-dimensionality the flow is no longer of the Blasius type but has
Rt experienced a modulation by the finite-amplitude TS wave. In a coordinate sys-
tem moving with the phase speed of this wave, the flow can be considered as
S approximately steady and pertodic in the streamwise direction. Analysis of the
$~ linear stability of this modulated flow with respect to three-dimensional distur-
e bances, therefore, leads to a Floquet system of linear differential equations with
b periodic coefficients. Well-known mathematical properties of such systems (Cod-
1 dington & Levinson 1955) are exploited to identify form and classes of solutions.
-, Numerical methods provide quantitative detail. This straightforward approach is
::I: obviously very similar to the classical theory of primary instability. The effort
'-;:‘_ involved in the elaborate formulation and demanding numerical work is rewarded
__.;‘,: by a rich variety of solutions with interesting properties.

v HISTORICAL REMARK Floquet theory has been widely applied to analyze the

$: stability of time-periodic flows (Davis 1976). In comparison with the often
':_3 dramatic resonances in other mechanical systems, the effect of time-periodicity,
'5.;3 e.g. in plane channel flow is rather mild. The reason is the uniformity of the vor-
Y ticity distribution as in steady flow. Clever & Busse (1974) solved a Floquet sys-
D ‘ tem for the instability of steady, spatially periodic convection rolls. In this case,
:"«:',': the effect of periodicity is mild due to the absence of shearing motion. Strong
N resonance is caused by the combination of redistributed vorticity with the sur-
‘:'_ rounding shear flow. It seems that Kelly (1967) was the first to apply the Floquet
e concept in shear flows; he studied vortex pairing in an inviscid shear layer. Soon
. thereafter appeared the long overlooked work of Maseev (1968a, b). A separate
o branch of analysis developed for flows with the periodic direction normal to the
s mean flow direction (Gotoh & Yamada 1986).
SRS Floquet theory was frequently applied in studies on gravity waves as an alter-
S native to the weakly nonlinear theory of resonant wave interactions. In principle,
e both approaches should give identical conditions for resonance, provided the
::f*‘, model of wave interaction contains all the waves involved in the physics and the
A wave amplitudes are small. Floquet theory appears as the more general and more
o
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powerful method not only for gravity waves but also for boundary layers,

8.1 Formal Background

DISTURBANCE EQUATIONS The standard procedure of linear stability
decomposes the velocity field v (and pressure p ) into a basic flow v, and a dis-
turbance v; that is sufficiently small for linearization. Substitution into the
Navier-Stokes equations and subtracting the equations for the basic flow (which
we assume to be identically satisfied) provides the linear stability equations

1 _, d
(7%= Vo= (V¥ va- (Va0 )ve = Vg,

TV vy3=0. (1)

The basic flow and its derivatives determine the coefficients of the stability equa-
tions. For the analysis of secondary instability, we write the basic flow in the
form

VQ(I’vy ’t) = v0( ) + A vl( Y vt) : (2)

where vy = vq(y ) represents the boundary layer flow, A the amplitude of the
periodic modulation, and v, a TS wave for a given set of parameters. We denote
with z/, y, 2z the streamwise, normal, and spanwise direction, respectively, with
associated velocity components u, v, w. We normalize v; such that A is a
direct measure for the maximum streamwise rms fluctuation u',,. All quantities
are nondimensional using the outer velocity U, and §, = (vL /U 4)"? for refer-
ence, where L is the distance from the leadxng edge Consequently,
R = (U, L /v)"?. We change from the laboratory frame z' to a Galilean frame
r moving with the TS phase velocity ¢,. In this frame, the basic flow is
independent of time and satisfies

va(z,y) = valz + X 09) T =2 - ot (3)

where X, is the wavelength of the TS wave.

The choice of the basic flow (2) involves three approzimations, the first of
which is well-established in the primary stability theory: the assumption of a
locally parailel low v,. The second approximation is the assumption of a locally
constant amplitude A of the TS wave, i. e. the amplitude is assumed to vary
slowly in comparison with the disturbances. This quasi-steady approach blurs the
onset of secondary instability but is well justified in the interesting region of
strong convective growth of the three-dimensional disturbances. The last approx-
imation is the shape assumption, i. e. the neglect of the non-linear distortion of
the velocity distribution v,(y) at finite amplitude 4. This step is justified by
the weak nonlinear distortion of the u' distribution even at amplitudes of 10%
(Hama, personal communication), and by the vortical nature of the secondary
instability mechanism (Bayly et al 1988). Nonlinearity mainly affects the phase

. -.,1._«, ' ,-_«,-,:,'J,:.",-..'__:..,:‘, L PR PCINTI R A ‘-‘.: ~. T L . ‘_\ ‘.\\\ > ﬁ,-;j,
u.‘-..-x.\..l-’! S YN IR d..\("!.‘\;x f-".&u.uf.l..ihﬂx"—w LMA ﬁ}-ﬂ




L)
' ) .‘l
D
a ttx s
» Mo

'

- 12 -

9
o
.’\'.-,

: of v, but has little influence on the vorticity distribution.

Ny NATURE OF THE SOLUTIONS The linear disturbance equations (1) with v,
s given by (2) are qualitatively different for A = 0 and A £ 0. In absence of the
SN TS wave, equations (1) form the basis of the classical theory of primary instabil-
e ity. Since the basic low is independent of ¢, r, and z, the normal mode concept
R can be applied with respect to these variables. After some rearrangement, this
A ey leads to the Orr-Sommerfeld equation for the velocity component v and to
l. Squire’s equation for the vorticity component n (Squire 1933) normal to the

:‘.j plate.

_:: For A # 0, equations (1) represent a system of partial differential equations
e with z -periodic coefficients. The normal mode concept can still be applied with
.7 respect to z and ¢ and three-dimensional disturbances can be written in the form

o vi(z,y.2,t) = e”‘e"B’V(z,y). (4)

:'.j‘_:ﬁ Due to the spanwise homogeneity of the basic flow, we consider the spanwise
o wave number 3 = 2m /X, as real, whereas 0 = o, + i0, is in general complex.

_Z::{' An important step in developing the theory of secondary instability is the

X identification of classes and form of V(z,y). Insight into the streamwise struc-

1

ture of the disturbances is given by the Floquet theory of differential equations
with periodic coefficients: the function V has the general form

Viz.y)=¢e"V(z,y), V(z +\,,y)= V(z,y), (5)

where v = 5, + 17, is a characteristic exponent, and V is periodic in z with
wavelength X, . Hence, we can express V in terms of a Fourier series and obtain
the general form of three-dimensional disturbances:

. ,
')I »

X
vy = catevzeiﬁz Z ‘;m(y)cimaz’ (6)
m=-10

where o = 27 /X,. The Fourier coefficients ¥, (y) are governed by an infinite
system of ordinary differential equations. Since the physical solution must be
real, any complex solution vz implies the existence of a complex conjugate solu-
tion v4. Consequently, the system of equations can be written in a form with
real coeflicients.

CLASSIFICATION OF MODES The occurrence of two complex quantities, o
and -, in the eigenvalue problem for secondary disturbances leads to an ambi-
guity similar to that associated with the Orr-Sommerfeld equation. Only two of
the four real quantities o,, 0,.7,, 7, are determined by the eigenvalue problem
for v ; the other two must be chosen.

We first note that v and ~ 4+ ik a yield identical modes for any positive
integer k£ to within renumbering the Fourier coefficients. Therefore, it is
sufficient to consider - a/2 < v; < /2. For convenience, we replace a by
& = a/2 and introduce ¢ = =, /&. Distinguishing the three cases ¢ =0, ¢ =1,
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and 0 < | €| < 1 provides the following classification of modes:

Fundamental modes, ¢ = O:

v, = eatew.zeiﬁz{,f (z,y), ‘;/ — Z \?m(y)c'.md’ (7)
m even
Subharmonic modes, € = 1:
v, = c”'cng'ﬁz\?,(z,y), ‘;a —_ Z Vm(y)e'.mdz. (8)
m odd

Detuned modes, 0 < |e| < 1:
vy = 8016‘7'261'/33 E ‘.'m (y )c i(m +e‘)dz. (9)

m even

The periodic functions v, in (7) and v, in (8) satisfy

Vi(z +3,y)= vi(z.wy), vo(z +20;,9) = v,(z,y). (10)

The fundamental modes v, are associated with primary resonance in the Floquet
system, while subharmonic modes v, originate from principal parametric reso-
nance. Detuned modes are related t.o combination resonance. It is obvious from
equation (9) that the construction of a physical solution requires two complex
conjugate modes with opposite detuning + ¢. Consequently, the real disturbance
contains wave numbers m & + v;, and the sum of such wave-number pairs
matches the TS wave number. We denote the real disturbance as combination
mode. Owing to the complex conjugate components, opposite detuning + v, in
wave number is conjoint with opposite detuning + Af in frequency.

GROWTH CONCEPTS The real parts 0, and 7, govern the growth of the dis-
turbance with respect to ¢t or z, respectively, and are of prime interest in the
analysis of secondary instability. Similar to Gaster (1662) for primary instability,
we distinguish temporally growing and spatially growing modes of secondary ins-
tability. It is important to recognize that spatial growth of disturbances in the

streamwise direction is measured in the laboratory frame z’ and e‘e?* =
e(f’—“fﬂ'r)t 6’71’

Temporal growth requires v, = 0. The temporal growth rate is given by o,
while o; can be interpreted as frequency shift with respect to the TS frequency.
Modes with o, = 0 travel synchronous with the modulated basic flow. The
detuning v, of the wave number is a given quantity.

Spatial growth in the laboratory frame requires 0, = v, ¢, for suppression of
temporal growth effects. Hence, 7, provides the spatial growth rate while ~, is
the shift in the streamwise wave number. The detuning of the frequency is given
by the value of o0; - 7, ¢

A
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J{{% FORMAL PROPERTIES Without solving for the modes, we can identify various
0% characteristics that are consistent with observations. The fundamental modes are
L]

doubly periodic with wavelengths X, and X\, like the ordered or aligned pattern
in the flow visualizations of Saric & Thomas (1984) and the flow field during
peak-valley splitting (Klebanoff et al 1962). The aperiodic term v, in (7)

1" } I'A l' "_

~_ represents a spanwise periodic mean flow distortion (u,) and a longitudinal vor-
o tex system (v, wq). This vortex system is an integral part of the three-
A dimensional disturbance; it grows simultaneously with the fluctuating com-
:~ ponents and at the same rate. This result is consistent with the observations of
'\’: peak-valley splitting, but different from the prediction of the weakly nonlinear
e models proposed by Benney & Lin (1960) and Herbert & Morkovin (1980).

:::: Subbharmonic modes are doubly periodic with 2\, and X\,, and invariant
e\ under the translation (z,z) — (z + X\;, 2z + X\, /2), which is characteristic of
R the staggered pattern in flow visualizations. In frequency spectra from a
s laboratory-fixed probe, linear subharmonic modes produce peaks only at odd mul-
el tiples of the subharmonic frequency, not at the fundamental frequency and its
ol harmonics. Subharmonic modes are not associated with an aperiodic component.
b The spanwise variation of the subharmonic disturbance ~ |cos@z | and the
o ! 180° phase jumps at the positions where cosfz = 0 is consistent with measure-
o ments of Kachanov & Levchenko (1984, fig. 20).

e Nearly equal amplitude of the two detuned modes that form a combination
= mode has been observed in controlled experiments (Kachanov & Levchenko 1984,
NS fig. 19). Equal difference in wave number (or frequency) for different values of m

is consistent with the experiment. It is interesting to note that combination reso-
nance is governed by a linear Floquet system. Occurrence of spectral peaks near
odd multiples of f /2 in the experiments is not caused by nonlinearity.

In all cases, the three-dimensional disturbance grows and travels as a whole.
All Fourier components have the same phase speed. as in the experiments of
Kachanov & Levchenko (1984, fig. 21, curves 2, 6, 7). At finite amplitude A,
modes of secondary instability and oblique TS waves are qualitatively different;
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j:E?;- they are ‘two kinds of animals’.
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"~_._' NUMERICAL ASPECTS The numerical effort increases from subharmonic
e through fundamental to detuned modes provided real systems are used for the
od former two. The temporal problem is less demanding since the temporal eigen-
:;:j: value o appears linearly in the equations. Primary and secondary stability prob-
s lem can be treated with similar numerical methods. Most of the work yet done
o utilized spectral collocation methods with Chebyshev polynomials in y-direction.
e This method converts the ordinary differential equations and boundary conditions
aa into algebraic equations. Direct treatment of the boundary value problem is pre-
s ferred over shooting methods since it maintains access to the spectra of eigen-
e values. Spectra are helpful for reliably identifying the most relevant modes in
o different regions of the multi-dimensional parameter space and for untangling
e
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their analytical connections. Such help is appreciated when dealing with prob-
lems without prior guidance.

The truncation of the Fourier series involved is crucial for the numerical
work. For subharmonic modes, the lowest possible truncation is | m | <1,
which includes only v_, and v,. The lowest approximation for fundamental
modes is | m | < 2 and includes V_,, Vo and V,. Detailed numerical studies
(Herbert et al 1986) have shown that the Fourier series converge rapidly, and the
lowest truncation provides sufficient accuracy for practical purpose.

8.2 Portrait of Secondary Instabslity

Numerical results from Floquet analysis and computer simulations in conjunction
with the few sets of experimental data have developed a consistent picture of
secondary instability. Most of these data are for the Blasius boundary layer.
Studies of other cases (Herbert & Bertolotti 1985) and the physical mechanism of
secondary instability (Bayly et al 1988) promise, however, that this picture is
generic for two-dimensional boundary layers in absence of strong concave curva-
ture (Gortler instability). In the following, we use the frequency parameter
F = 10%a, ¢, /R . and wave number b = 10°3/R to specify three-dimensional
disturbances of fixed dimensional frequency and spanwise wavelength as they
travel downstream. The amplitude of secondary modes is denoted by B. For
conv enience, we distinguish three ranges of the TS amplitude: small, 4 < 0.5%,
medium, 0.5% < A < 2%. and large, A > 2%. Except if stated otherwise, the
results are for temporally growing modes in the Blasius boundary layer.

EIGENVALUE SPECTRA For medium and large amplitudes, the principal, i. e.
most amplified modes of temporal subharmonic or fundamental instability are
associated with a real eigenvalue o. Secondary mode and TS wave are phase-
locked and travel at the same phase speed, in agreement with the observations of
Klebanoff et al (1962) and Kachanov & Levchenko (1984). Synchronization pro-
vides an optimum chance for the transfer of energy into the three-dimensional
disturbance. As in plane Poiseuille flow, a second mode with smaller growth rate
may become unstable. This ‘complex mode’ is not phase-locked and will be disre-
garded since no evidence for its role in transition has been found.

SUBHARMONIC GROWTH The variation of the growth rate ¢ = o, for the
principal subharmonic mode as a function of the spanwise wave number b is
shown in Figure 5. At very small amplitudes, instability (o, > 0) is restricted to
a narrow band near &6 = 0.18. As A increases, instability occurs in a broadening
band of spanwise wave numbers. The range of maximum growth shifts toward
larger values of b, and o, decreases nearly linear as b increases. The instability
is sharply cut off at lower wave numbers. Hence, the two-dimensional mode of
pairing instebility is suppressed. Vortex pairing has been found only in
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inflectional boundary layers at large amplitudes of the periodic modulation. (Her-
bert & Bertolotti 1985). The maximum growth rates are large in comparison
with the maximum growth rate of TS waves, justifying the quasi-steady approxi-
mation At A = 1%. the secondary mode grows by two orders of magnitude
within less than 8 TS cycles. With the other parameters fixed, the growth rate
o, increases with increasing TS amplitude A as in the experiments of Gaster
(1984, fig. 8) and Kachanov & Levchenko (1984, fig. 2). Unfortunately, the span-
wise wavelength is unknown in both experiments.

The effect of the downstream increasing Reynolds number R on o, is two-
fold. The growth rate o, increases with increasing R at otherwise fixed parame-
ters. In addition, the amplitude A increases with R between branches I and [l
and thus further enhances the secondary instability. Figure 5 partially explains
the observation of different wavelength by Saric & Thomas (1984). At ampli-
tudes of 4 < 0.3%, subharmonic resonance is restricted to the neighborhood of
b =~ 0.18 and results in A, = 1.5X\,. The wider band at higher amplitude levels
permits amplification for larger wavenumbers. The selection of § = 0.4 and
X, = 0.68\, with 4 < 0.4%, however, can only be understood in the light of a
nonuniform disturbance background. A similar spanwise wavelength was found
for the fundamental instability at higher A < 0.7%. The value of b = Q.33
observed by Kachanov & Levchenko at medium amplitudes is well within the
range of maximum amplification.

The important role of the initial amplitude B, of the three-dimensional dis-
turbance is clearly shown by the experiments of Kachanov & Levchenko (1984,
fig. 15c) and Saric et al (1984) with simultaneous ribbon excitation by the TS fre-
quency and its subharmonic. A linear variation of the phase ¢ between the two
signals results in an amplitude B ~ | cos¢ | of the amplified subharmonic, pro-
portional to the initial amplitude of the phase-locked component of the ribbon
excitation. The subharmonic mode can lock on in two different phases with
jumps of 180° when cos¢ = O.

Simultaneous integration of the spatial growth rates of TS wave and subhar-
monic mode with initial amplitudes matching the experimental conditions pro-
vides the data shown in Figure 8 together with the measurements. Except for
the first few points, the streamwise variation of the subharmonic amplitude is
well predicted by the theory. The experimental data for R < 500 were taken in
the region of transient behavior immediately downstream of the ribbon. The
important role of the wave fetch in the formation of the subharmonic disturbance
field has been demonstrated by Thomas (1988). Results similar to Figure 6 were
earlier (Herbert 1984) obtained using the temporal growth concept and the
transformation v, = o, /¢,. Detailed comparison of spatial growth rates and
transformed temporal rates as in Figure 7 (Herbert & Bertolotti 1985) verifies
that the restriction of Gaster's transformation to small growth rates does not
apply to secondary instability. The wave propagation properties of secondary
modes are quite different from those of primary modes. Principal subharmonic
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and fundamental modes travel at a speed independent of the spanwise
wavelength; they are swept along with the TS wave. Bertolotti (1985) has shown
hat ¢, is indeed the leading term in the temporal-spatial transformation, with
small corrections by dispersive terms. The surprisingly simple relation between
spatial and temporal growth helps to explain the success of temporal computer
simulations in reproducing the characteristics of spatially developing transition.

K-, H-. C-, AND OTHER TYPES To emphasize the distinctive features of the
route to breakdown described by Klebanoff et al, Herbert & Morkovin (1980) sug-
gested that it be called K-breakdown. The attribute 'K-type' found widespread
acceptance. Saric & Thomas (1984) then extended the catalogue by introducing
the attributes ‘C-type’ for Craik and 'H-type' for Herbert to distinguish two
different mechanisms of subharmonic development. Resonance of Craik's triad
causes the narrow peak of amplification at small amplitudes in Figure 5. while

this peak is absent under other conditions. For these parameters, F = 124,
R = 606, oblique waves with 5 = 0.18 are unstable owing to primary instabil-
ity even at A = 0. Other modes participate in the wave interaction to minor

extent. At different wave numbers 4, however, subharmonic resonance occurs
owing to these other modes and Craik's triad plays a minor role. Study of
Craik's model (Maslennikova & Zelman 1985) reveals some aspects of the obser-
vations but fails to provide a full quantitative picture. Craik's triad is a valid
but incomplete model of subharmonic wave interaction. The shortcoming is most
clearly shown by the broad-band subharmonic instability of plane Poiseuille flow
(Herbert 1983a) where Craik’s triad is inoperative. There, subharmonic instability
originates from Squire modes that were ‘forgotten’ in weakly nonlinear modeling
since they are always stable. Meanwhile, Nayfeh {1985) found that Squire modes
can strongly interact with TS waves. H-type is the more general type of subhar-
monic instability that may occur in various flows and for a broad band of span-
wise wave numbers. At other parameters, where the sharp peak of C-type reso-
nance disappears, subharmonic instability becomes a threshold phenomenon.
Since Floquet analysis is more general, it reveals Craik's triad when appropriate.
In short, C-type is a sensitive mechanism with many 'ifs and whens’, H-type is a
robust subharmonic instability that needs nothing but periodically concentrated
vorticity in a shear flow, no matter what wavelength, the stronger the better.

Often one is confused by the use of the same name (e. g. haipin vortex) for
different phenomena. Here, we are fortunate to have many names for just two
phenomena. Staggered, subharmonic, C-type and H-type are synonyms for prin-
cipal parametric resonance in the boundary layer. Aligned, fundamental, peak-
valley splitting, and K-type are synonyms for primary resonance.

Two questions remain open. The first is how to name the combination modes
that are most likely to dominate in nature. K for Kachanov would be confusing;
L for Levchenko would honor his contributions over the past decade and the first
description of these modes; S could stand for Santos who developed the theory to
incorporate these modes; or simply E since these modes embrace, embody, enclose
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NG every other type as a special case. The second question is why subharmonic ins-
o tability remained concealed for so long.

. PEAK-VALLEY SPLITTING Growth of secondary modes is only observable and
leads to transition if the initial amplitude of the three-dimensional disturbance is
=7 sufficiently large and the conditions for growth persist for a sufficiently long time
or streamwise distance. Theory predicts that growth characteristics of subhar-
- monic and fundamental modes are similar, with the subharmonic being the most

¢ ) . . )

dangerous mode at small and medium TS amplitudes. The key experiments pro-
o vide details on different aspects of secondary instability at different frequencies:
= 58.8: hot-wire data on peak-valley splitting, Klebanoff et al (1962),
64.4: hot-wire data on peak-valley splitting, Cornelius (1988),
83: flow-visualizations of various modes, Saric & Thomas (1984),
‘ 124: hot-wire data on subharmonic and combination resonance, Ka-

s chanov & Levchenko (1984).

. None of the available sets of hot-wire data allows comparison of subharmonic and
"_l:": fundamental modes at fixed frequency. Figure 8 relates the location of the
vibrating ribbon (or wire) and the range of Reynolds numbers studied in these
) experiments to the stability diagram for Blasius flow. According to Floquet
7 analysis, peak-valley splitting is likely to occur at lower frequencies since it needs
<l stronger TS growth to produce larger amplitudes. (By the way, the Strutt
N diagram for the Mlathieu equation with damping shows the same qualitative
. features.) An analysis of fundamental modes has been performed by Herbert
( y (1985) for the experimental conditions of Klebanoff et al. This analysis revealed

two discrepancies. First. the streamwise growth of the TS wave in the experi-
: ment is not in agreement with the predictions of linear stability theory. Dr.
e Klebanoff explained to me that, at the time of this experiment, emphasis was on
‘08 a description of the nonlinear and three-dimensional phenomena in transition; the
J characteristics of linear TS waves were already verified in the work of Schubauer
= & Skramstad. Second, the calculations indicate that subharmonic instability
should have prevailed in this experiment if the background amplitudes for funda-
mental and subharmonic modes were equal. The experiments were conducted in
a similar region of the stability diagram as the studies of Kachanov & Levchenko
on subharmonic resonance. The experimental arrangement of Klebanoff &
Tidstrom (1959), however, and especially the spanwise spacers on the plate sur-
face beneath the ribbon in the later work enhanced spanwise periodic mean-flow
variations and disturbances of the longitudinal vortex type. In Poiseuille flow,
longitudinal vortices and pure spanwise modulations of the mean flow (degenerate
- Squire modes) are the ingredients for the resonant mechanism of peak-valley
splitting. In boundary layers, such modes are concealed in the continuous spec-
trum but pop out to contribute to the formation of fundamental modes. K-type
" three-dimensionality, therefore, seems to develop only under specific cir-
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Figure 9. The lines represent theoretical data while the symbols were obtained
from computer simulations of transition in a temporally growing boundary layer
by Spalart & Yang (1986). The systematic deviation reflects approximations in
both theory and computation. The common conclusion is that subharmonic
modes are more unstable than fundamental modes, at least for wave numbers
near maximum amplification. The computer simulations show that even at large
TS amplitudes pure peak-valley splitting cannot be obtained from a uniform or
random disturbance background.

Herbert (1983b) has blamed the biased conditions in wind and water tunnels
for the distorted perception of transition in channel flow. Measures to caim down
the noisy flow in tunnels commonly involve a settling chamber and strong con-
traction. The large contraction ratio converts most of the residual disturbances
into streamwise vorticity. This vorticity, on the other hand, favors the fundamen-
tal mode of secondary instability. Clear evidence for this preference are the com-
puter simulations of Singer at al. (1986) for Poiseuille low. By introducing small
longitudinal vortices in the initial conditions, the otherwise subharmonic develop-
ment was suppressed and peak-valley splitting occurred, H-type switched into K-
type. To provide data for quantitative verification of theoretical results, Cornelius
(1985) studied peak-valley splitting at a frequency close to that of Klebanoff et al
but further upstream of branch II (see Figure 8). By placing spanwise spacers at
different distance, Cornelius documented the three-dimensional development for
J = 0.24 and 3 = 0.48 and hence experimentally verified for the first time the
broad-band nature of fundamental instability. The accuracy of these data does
not permit the parallel-flow approximation in theoretical work and detailed com-
parison awaits its turn.

LOSS OF SELECTIVITY The theoretician who relies on the rigid basis of classi-
cal mathematics, and in his numerical work, on increases in raw speed and
memory of computers, recognizes stunning progress in experimental techniques.
More sophisticated flow control in wind tunnels, computer-controlied data
acquisition and data reduction have reduced the irritating bias of earlier experi-
ments. What appeared repeatedly as a selectivity of the transition mechanisms
has been a selectivity of the experimental apparatus. The attempt of Anders &
Blackwelder (1980) to vary the characteristic spanwise spacing of the K-type field
was unsuccessful owing to a concealed source of streamwise vortices with a pre-
ferred spanwise scale.

The portrait of secondary instability would be incomplete without a glance at
combination modes. These modes travel in general with a speed different from
the TS wave speed and, as a team, lead to a beating hot-wire signal as it has
been seen by Kachanov & Levchenko and Thomas & Saric. For small ampli-
tudes, Santos & Herbert (1986) found a broad peak of amplification for detuned
modes in the neighborhood of the subharmonic mode, ¢ = 1. This nearly even
amplification of modes in a whole range of streamwise wave numbers or frequen-
cies is consistent with the observation of a broad peak centered at the
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subbharmonic frequency in the various experiments (Thomas 1986). The width of
this peak varies with the amplitude A and flattens out into a plateau of almost
uniform amplification at larger amplitudes, as shown in Figure 10.

From the parametric dependence of the growth rates which appear to be well
predicted by the Floquet theory, we may draw the following conclusions for an
environment with controlled TS frequency but random three-dimensionality: At
extremely small initial TS amplitude at branch [, TS waves grow and decay
according to primary stability characteristics. At small A . C-type iastability
occurs near branch [I with a specific spanwise wavelength typically larger than
the TS wavelength. As the branch I amplitude further increases. amplification
broadens in a range of near-subharmonic frequencies with a tendency toward
larger spanwise wave numbers. Ultimately, at large amplitudes the ‘black box' of
secondary instability amplifies whatever the background provides, no matter ﬂ
whether subharmonic. fundamental or detuned, in an extended range of spanwise q
wavelengths of order O (X, ).

Within a linear framework, the phenomena arising from a mixture of different :j
TS frequencies are a superposition of the above with proper zccount for the 4
downstream shift of branch [. In a low-noise natural environment, then, the
preference of primary instability for two-dimensional waves may still support
secondary instability on a modified planform of oblique and bent vorticity con-
centrations with less regular spacing accumulated in wave packets. In noisy
environments. however, the TS mechanism is no longer needed and may be
byvpassed: preexisting vorticity concentrations of irregular spacing and orientation
combined with the mean shear directly activate the processes of vortex tilting
and stretching (Bayly et al 1988) that lead to transition. Verification of these
latter conclusions may be a challenging target for computer simulations. Most of
the present boundary-layer codes are restricted to a computational domain one or
two A, long and X, wide and therefore do not allow for studies on the selection
and interaction of waves. The wider domain in Spalart's code (Spalart & Yang
1986) is an exception. Small domains, however, permit great detail in resolving
breakdown (Krist & Zang 1987).

LL . ‘é'é 4 a.h
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VELOCITY PROFILES Returning from speculation to the factual results of the
Floquet analysis, it is revealing to closely examine the distribution of the stream-
wise velocity normal to the wall shown in Figure 11 for the various modes. All
modes show maximum activity slightly above the critical layer for the TS wave,
the center of Kelvin's cats eyes in the moving coordinate frame, and rapid decay
toward the edge of the boundary layer. The detailed power spectra Gaster (1984)
obtained at the edge of the boundary layer severely underestimate the strength of
combination resonance at lower distance from the wall. The distinct frequency
allows direct measurements for subharmonic (and combination) modes. The com-
parison between results of Kachanov & Levchenko and theory is shown in Figure
12. The fundamental mode is usually observed in superposition with the TS
wave and discerned by comparison at spanwise positions X\, /2 apart. as in Figure

5%

’!'!’I. ata s’ un Y lz.k. Y



PP —

13. Besides the streamwise fluctuations, mean-flow distortion, the longitudinal
vortex system, and spanwise fluctuations are consistent with available hot-wire
data. B

COMPUTER VISUALIZATION Knowledge of the velocity field in the various
stages of transition permits constructing data for conclusive evaluation of hazy or
controversial concepts or connections. One of the first applications is the repro-
duction of the patterns of various modes in flow visualizations by computer-
animation based on the theoretical data (Bertolotti et al 1986). The motion pic-
tures show the development of particle lines released from a ‘smoke wire' at
different times and locations. Obviously, the staggered subharmonic pattern and
the aligned fundamental pattern can be reproduced, and for the conditions of the
experiments, the first indication of spanwise structure leads within about five TS
cycles to a dramatic stretching of the particle lines which to describe is beyond
the power of a linear analysis. The pictures vary sensitively with the distance of
the smoke wire from the wall, especially when passing through the critical layer.
The appearance of the A vortices changes with the different history of the parti-
cle field when the smoke wire is moved downstream (Bertolotti & Herbert 1987,
in preparation). Two instantaneous pictures of a strongly detuned combination
mode (¢ = £ 0.5) are shown in Figure 14. The pattern resembles the staggered
or the aligned mode depending on the phase relation to the TS wave. Many of
the observed 'mixed’ patterns are likely to involve competing combination modes
of different spanwise wavelength.

A VORTICES The second application of velocity fields is borrowed from the
world of computing: are the A's really vortices? Reconstruction of the flow field
from hot-wire data by Williams et al (1984) supports the vortex concept.
Analysis of numerical data by Kleiser & Laurien (1985) shows only a dislocation
. of vortex lines along the legs of the A\ while Zang & Hussaini (1985) agree with
the general features depicted by Williams et al. Recent all out efforts of Krist &
Zang (1987) aim specifically at the origin of the A's. there called ‘*hairpin vor-
tices'. High-resolution runs for K-type and H-type transition at different Rey-
nolds numbers produce similar vortices; the streamwise and spanwise vorticity

ey

ey |
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2 distributions conform with the measurements of Williams et al (1984). The \A's
- are vortices, as shown in Figure 15.

E‘. 8.8 Gortler Vortices and Cross-Flow Vortices

o The success of the Floquet theory in explaining the secondary instability excited
ﬁ by TS waves suggests to search for other applications. If one limits this search to

boundary layers, counter-rotating Gortler vortices in the flow over concave sur-
faces and co-rotating cross-flow vortices in three-dimensional boundary layers are
the two prime candidates. Primary and secondary instability and the relation to
transition for these two cases have been reviewed by Saric & Reed (1987, to
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appear) with the conclusion that many questions remain to be solved.

l-

¥ G6RTLER VORTICES The Gortler instability is of centrifugal nature and
governed by the streamline curvature of the flow with stabilization by viscosity.
Nayfeh (1981) found by a weakly nonlinear method strong double-exponential

i
oA
¥t

N growth of oblique TS waves in presence of finite-amplitude Gortler vortices.
;\-_i Srivastava (1985) obtained with similar methods significant but less dramatic
" amplification while computer simulations by Malik (1986) were unable to repro-
' duce Nayfeh's result.
| _-"(:.':: In the light of the Floquet theory, the disturbances can be written as
::::5‘ vyz'wy.zt)= et e’ e V(y,z) (11)
:. where spanwise homogeneity requires v, = 0, and o, = 0 for the streamwise
growing disturbances. Special solutions are traveling waves ~exp(ia,z+10,t).
N The streamwise amplification rate a, is expected to be small owing to the uni-
N form vorticity in the mean-shear direction. An inviscid model of the instability
',‘;.: mechanism rests on the tilting of the vortices and their images which is governed
: . by Biot-Savart's law. Some vortex stretching will occur and the shear flow will
Ps fold and sweep away the bows, enhancing the longitudinal vorticity. The strong
o stretching effect that reorients preexisting vortex filaments, however, is missing.
::‘ . Since interaction happens between neighboring vortices of opposite sense, the
-3 break of symmetry is governed by two fundamental modes of different spanwise
:"-f_ phase. A, /4 apart. [n both cases each single vortex meanders downsiream. All
. vortices wind synchronously in one case, out of phase with their neighbors in the
- other. The former motion is similar to wavy Taylor vortices and is more likely to
p o appear than the latter which involves deformation besides bending. The
:i: occurrence of subharmonic modes seems to be largely precluded by topological
\f'..: reasons. The generation of small scales and high frequencies for breakdown is
Mo likely to be associated with localized high-shear layers that develop from the
! uplift of low-momentum fluid between vortices (Hall 1986).
‘.‘;.: Floquet analysis of the secondary instability of Gortler vortices with the
o assumptions introduced in section 3.1 will be of qualitative character. Not only
~'_:4-: has Hall (1983) shown that the streamwise variation of the boundary layer
~ prevents application of the normal-mode concept, but the growth of the vortex
amplitude (Malik 1986) cannot be considered small in comparison with the
ﬁ: growth rate of secondary modes.
O
O CROSS-FLOW VORTICES The catalogue of mean flows with important cross-
PN flow instability ranges from the boundary-layer flow over a rotating disk through
flows over spinning axisymmetric bodies to the flow over swept wings. These
A0 cases are distinguished by decreasing angle § between the vortex axes (in ¢ direc-
\-" tion}) and the r direction of the potential flow. Observation and physical intui-
N tion suggest that r is the proper direction for the growth of primary and secon-
- dary instabilities and development toward transition - r means downstream.
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Since cross-flow instability may cause transition in swept-wing flows before the
competing TS instability develops, this flow of practical interest has been chosen
to study secondary instability of basic flows with cross-flow vortices. In this flow,
the angle 6§ is small, say 3°. Reed (1985) applied the method of multiple scales
to analyze the interaction with oblique waves. Reed (1984) and Fischer &
Dallmann (1987) used Floquet analysis to find temporal growth rates of secondary
modes. The two more recent studies agree about the tendency toward a rising
second harmonic in the Floquet direction £ normal to ¢. Fischer & Dallmann
found growth rates of subharmonic, combination, and fundamental modes with
different wave numbers in ¢ lower than the (neglected) growth rate of the cross-
flow vortices even at amplitudes of 6.9%. A strong instability has not yet been
discovered.

The cross-flow instability over swept wings is caused by a small inflectional
velocity distribution normal to the potential flow. The primary disturbances
draw their energy from this weak component. Stretching of the z-vorticity com-
ponent by non-parallel effects may have a first order effect on the primary growth
(Morkovin 1983). As for Gortler vortices, the orientation of the disturbance vor-
ticity in the mean flow direction may prevent strong instability from occurring.
Along which path the main body of the flow feeds enough energy into the distur-
bances to cause transition remains an open question.

4. SECONDARY INSTABILITY AND TRANSITION

Floquet analysis of linear secondary instability supported by computer simula-
tions has certainly increased our insight into the transition mechanism and the
capability of predicting the quantitative characteristics of the early three-
dimensional stages of transition. However, it has not yet improved the capability
of predicting transition in practice. Two ingredients are missing for such predic-
tion. The first ingredient is the frequency and amplitude composition of the
noisy background which is hardly measurable. Reasonable assumptions, empiri-

cal data. and receptivity studies may alleviate this lack. The second missing ele-

ment is a quantitative criterion for the conditions that lead to self-sustained

i growth of three-dimensional disturbances. Linear theory is unable to provide this
:-' ingredient.

In a linear framework, secondary instability leads a parasitic existence on the

. TS waves. Secondary modes may grow but will harmlessly decay as the vital

~ vorticity concentrations fade away. This decay is clearly shown in Figure 16

) reproduced from Kachanov & Levchenko (1984) at low levels of the amplitude A .

& At higher amplitude levels, however, the stronger growth leads to three-

«

‘ dimensional amplitudes B large enough to affect the two-dimensional wave
development. Nonlinear interaction prevents the decay of the signal at the TS
frequency. Primary and secondary disturbances join in a rapid evolution toward
breakdown. Similar curves were obtained from transition simulations (Spalart &
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Yang 1986).
4.1 Energy Balance

Investigation of the energy balance is a first step into exploring the nonlinear
interaction between the components of the flow field. The main path of energy
transfer which leads directly from the mean flow into secondary modes was
identified earlier by Orszag & Patera (1983); the TS wave plays only a catalyst
role. Croswell (1985) used solutions from Floquet analysis and studied the energy
transfer between mean flow v, two-dimensional wave A v, and three-
dimensional disturbances Bvj; in plane Poiseuille low at a fixed time, i. e. for
fixed amplitudes A * and B*. Herbert (1986) reports some results of this studv
which show an interesting spatial distribution of the energy transfer and give a
first lead toward insight into the feedback loop of self-sustained growth.

SPATIAL DISTRIBUTION For unstable TS waves, the distribution of the
power in the .y plane shows shallow extrema near the critical layer, spreads far
away from the wall, and is periodic in z with wavelength X\, /2. Averaging in the
streamwise direction provides a sharp peak at the critical layer. Integration nor-
mal to the wall yields the small positive growth rate (multiplied with twice the
energy of the TS wave). For fundamental and subharmonic secondary modes,
the picture changes drastically. The spanwise averaged power has sharp oval
peaks near the center of the cat’'s eyes, a clear indicator for the close association
between vorticity redistribution and secondary instability. Though less obvious,
a similar concentration of the streamwise averaged power can be seen in the y, z
plane normal to the mean flow direction. A more detailed scan reveals that the
energy transfer into secondary modes is confined to shallow ellipsoids centered
above the critical layer and at the positions where the deflection of the distri-
buted spanwise vortices is strongest.

The observation of this highly localized energy transfer stimulates some
abstraction. The tie to the critical layer stems from creating the distributed vor-
tex array by a TS wave. Such an array created in another way at u different dis-
tance from the wall and convected with the local mean velocity will behave simi-
lar to within changes in shear and viscous effects. Because of the broad-band
nature of the secondary instability, spanwise periodicity of the three-dimensional
disturbance will not be necessary. A single twist or kink may be enough to give
birth to a patch of A vortices. Small curvature, small variation in strength, wad
finite spanwise extent of the vortices like the crests of a wave packet will barely
cause dramatic changes. The spanwise and streamwise periodicity is essential for
the pattern formation and distinction of various modes. The streamwise
wavelength determines the spanwise scale of the pattern. However, the pattern is
not vital to transition. Should not a single vortex convected with the local mean
velocity and exposed to a single kink reveal the dynamics of the early stages of
transition? Stuart (1965) studied peridic disturbances of a single vortex and
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o found scales similar to those in the experiments of Klebanoff et al (1962). More
b understanding of this subject might reveal the secret of ‘bypasses’.
A A FEEDBACK LOOP The global energy balance was studied by Croswell (1985)
:?‘ at amplitudes in the range of 1% and with the shape assumption for the basic
:-_::)\ flow. His findings are summarized in Figure 17. (1) For unstable TS waves, the
:}:: transfer of energy from the mean flow to the two-dimensional wave is weak owing
W to the viscous mechanism; a considerable part of the gained energy is dissipated.
v _ (2) At sufficiently large amplitude A, the two-dimensional wave leads to
S parametric excitation of three-dimensional modes. (3) This excitation causes
.‘t:-." strong energy transfer from the mean flow into the three-dimensional wave. One
_;_‘:’_ part of this energy is dissipated, a second part increases the amplit':de B of the
T three-dimensional wave. Steps two and three agree with results of Orszag &
Patera (1983) for the instability of large-amplitude periodic motions. (4) A third
e part of the gained energy is transferred into the two-dimensional wave. This
,:) component draws off a minor amount of the three-dimensional growth but boosts
8 the modest energy budget of the two-dimensional wave; the gain in growth rate is
o proportional to BZ/A. (5) Once B has attained a sufficiently large value, the
®1 energy of the two-dimensional wave can increase even if the TS mechanism fails
7 to support this growth. This result is consistent with computational results of
Vol Spalart & Yang (1986). (6) Provided the gain in energy maintains the vital cata-
i:::. lytic effect of the earlier steps, it enhances the parametric excitation. (7)
o g Parametric excitation of three-dimensional disturbances by the two-dimensional
b field they create would establish a positive feedback loop and lead to self-
‘ ' sustained simultaneous growth of two-dimensional and three-dimensional waves.
.,-‘;," - Existence of such a loop is supported by experience, experiment, and computa-
oA tion.
'\.‘_:
-
e 4.2 Threshold Conditions for Self-Sustained Growth
\; The energy analysis of Croswell involves approximations and neglects nonlinear
:.: effects such as the distortion of the velocity profiles and the generation of har-
S as monics. Crouch & Herbert (1986) study a model of the nonlinear interaction
.\‘_ based on an expansion about the periodic basic flow of a given amplitude 4 *.
N The interaction model consists of two modes of secondary instability the first of
e which is two-dimensional. This mode describes the instability of the basic flow in
et a strictly two-dimensional framework. The other mode is either a subharmonic
- or fundamental mode of three-dimensional instability. Similar to the energy
> . analysis, the expansion yields up to second order the amplitude equations
. ﬂzaofi +a,A% + a,B?, £=bOB + b,AB (12)
oo dt - dt
. where 4 = A - A*, and @, and b, are the linear growth rates of the secon-
. dary modes. The parametric effect of A on the three-dimensional growth rate is
A4
»
-‘.'




represented by b, > 0. The unusual self-interaction of the two-dimensional
mode at second order is caused by the periodic character of the basic flow, and
a, is of minor importance. Of prime interest is the coefficient a, which incor-
porates the effect of the three-dimensional disturbance on the two-dimensional
mode. In accordance with the energy analysis, this effect is proportional to B?,
and 4, is expected to be positive and large in comparison with | a,| whenever
A’ is sufﬁcxently large. Hence, the two-dimensional mode will always grow if
apd +a,A% > 0. Otherwise, it w1ll grow only if B exceeds the threshold value
B,, where B> = —(agA + a,4°%)/a,. Numerical results of this study will be
reported by Herbert (1987).

5. Concluding Remarks

The past decade has seen important progress in the exploration of the three-
dimensional aspects of transition in boundary layers. Experiment, theory, and
computation have contributed their share and taken their profit. Perhaps, the
most significant progress is the consistency of the current picture of transition as
it evolves from the ribbon-controlled background. Much work remains to be
done to relax this and other restrictions that made the methods successful. The
downstream changing conditions in boundary layers demand wider application of
the spatial growth concept in theory and computation, especially when dealing
with resonant interactions. The Floquet theory of secondary instability has
revealed great potential in coping with the periodic flows that frequently evolve
from primary instability. However, the assumptions inherent to this theory are
not always easy to satisfy. Finding the key to transition caused by Gortler vor-
tices or cross-flow vortices is still a challenge. Exploration of the nonlinear level
of secondary instability is in an infant stage. When looking at tertiary instabil-
ity. wave packets, and other localized phenomena, our tools seem not as powerful
as we would like them to be. We have learned a lot, however, and this review is
not the final report on transition in boundary layers.
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Figure Captions

Figure 1 Smoke-flow visualization of transition in the boundary layer over an
axisymmetric body. Photograph by F. N. M. Brown. (Courtesy of
the University of Notre Dame).

Figure 2 Staggered pattern of A vortices. (Courtesy of J. T. Kegelman).

Figure 3 Aligned pattern of A vortices. (Courtesy of W. S. Saric).

9S8

Figure Threshold amplitudes A for the onset of three-dimensionality with
spanwise wavenumber o in the boundary layer. Curve 1:
R = 1203, a = 0.43, curve 2: R = 519, a = 0.27. (Maseev

1968b).

Ut

Figure Subharmonic growth rate o, as a function of the wavenumber b

for F = 124, R;; = 608. (Herbert 1984).

(o]

Amplitude growth with the Reynolds number R at F = 124. (A)
TS wave with A, = 0.0044, (B) subharmonic mode with
B, = 1.26:107%, b = 0.33. Comparison of the theory ( ) with
experiments (x, o) of Kachanov & Levchenko. (Herbert et al 1986)

Figure

Figure 7 Spatial growth rate +, vs. spanwise wave number 3 for the princi-
pal subharmonic mode. Results of (a) direct calculation and (b)
transformation of temporal data. R = 826, F = 83, A = 0.02.
(Herbert & Bertolotti 1985).

Figure 8 Stability diagram for the Blasius boundary layer and ribbon posi-
tions (+). The horizontal lines indicate frequency and Reynolds

- number range in the experiments.
::7. Figure 9 Growth rate of three-dimensional disturbances as a function of the
& spanwise wavenumber 3 for F = 58.8, R = 950, and A = 0.014.

Theory: (a) subharmonic, (b) fundamental. Computation by
Spalart (1986): (o) subharmonic, (x) fundamental.
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::'. Figure 10  Growth rate o, for detuned modes at F = 124, R = 608,
AKh A =001, b = 0.33. Subharmonic and fundamental modes
- correspond to &@ = a/2 and a, respectively.

'.'r'.::

:_j Figure 11 Normalized streamwise velocity components. Subharmonic mode,
Y ¢ = 1 (left), detuned mode ¢ = 0.5 (middle), fundamental mode
n._ e = O (right). R = 606, @ = 0.1017, A = 0.01, 3 = 0.2.

o
e Figure 12 Normalized u’-distribution of the subharmonic mode at F = 124,
oy R = 608, 4 = 0.0122, and b = 0.38. Theory ( ) and experi-
‘: ment (o) of Kachanov & Levchenko.

Figure 13 Distribution of u’ across the boundary layer for F = 588,
~ b = 0.243. and R = 960. Theory: (a) peak, (b) valley. Experi-

e ment of Klebanoff et al: (o) peak, (x) valley.

-

L %0

" Figure 14 Computer visualization of combination resonance at two different
- phases with respect to the TS wave.

s

::._: Figure 15 A vortices in plane Poiseuille flow shown by the streamwise vortici-
'_':: ty component at R = 1500. K-type (left) and H-type (right).

(Krist & Zang 1987).

.

Figure 16 Amplitude growth curves for disturbances at different levels of the
TS amplitude. (o) fundamental frequency [, 4, = 0.00163, (+)
subharmonic  frequency f /2, A4,= 0.00163, (4) I

Ay = 0.00654, (x) [ /2 4,=0.00645. After Kachanov &
Levchenko (1984).
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Figure 17 Schematic of the energy transfer between mean flow v, two-
dimensional wave v,, and three-dimensional disturbances v,

, ( ), and catalytic effect of v, (- - - -). The numbers refer to the
text.
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Staggered pattern of A vortices. (Courtesy of J. T. Kegelman).
Aligned pattern of A vortices. (Courtesy of W. S. Saric).
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Figure 4 Threshold amplitudes A4 for the onset of three-dimensionality with

spanwise wavenumber o in the boundary layer. Curve 1:
: R = 1203. a = 0.43, curve 2: R = 519, a = 0.27. (Maseev
i 1968b).
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L Figure 5 Subharmonic growth rate o, as a function of the wavenumber b
2 for F = 124, Ry = 606. (Herbert 1984).
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Amplitude growth with the Reynolds number R at F = 124. (A)
TS wave with 4, = 0.0044. (B) subharmonic mode with
By = 1.2610"°, b = 0.33. Comparison of the theory ( ) with
=xperiments (x, o) of Kachanov & Levchenko. (Herbert et al 1986)
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Figure 7 Spatial growth rate v, vs. spanwise wave number 3 for the princi-
pal subharmonic mode. Results of (a) direct calculation and (b)
transformation of temporal data. Re = 826, F = 83, A = 0.02. \
(Herbert & Bertolotti 1985). :
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number range in the experiments.

R R A SRR RIS R 555



- B Ak ey e A gh A ani vk gl aaa -aad hav e L aiah gam e uns iut gt ot Sud e bRl hA RANAI A
'

! - 2

‘o W N i

e AT Nt

.012 T T T T T

.006

a2 BT

5 Figure 9 Growth rate of three-dimensional disturbances as a function of the R
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' Theory: (a) subharmonic, (b) fundamental. Computation by '.
y Spalart (1986): (o) subharmonic, (x) fundamental.
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Figure 13 Distribution of u’ across the boundary layer for F = 58.8,

h = 0.243, and R = 960. Theory: (a) peak, (b) valley.

Experi-
ment of Klebanoff et al: (o) peak, (x) valley.

o

[}

O Sy LS » L] 2 ¥ g w e W ., o
» Ay »
RN g"‘.&"."'!! 1.0.12"' A Cgte |"‘n ) “‘ U XL N



A

(L1esoduiay)

Judweuelle pasadders pue poudije udaIMIdq SIIA0-aFURYD YY) AON
(€0 F = 3) 9ouruosa UONEUIGIIOY JO uonezijensia J43ndwo;) 1 2andi gy

TP Y R O Ry NG W RO WO W W WY WY Y < Y W

‘N B . ‘.,k.t: . 5 - ﬁ
- ,.,.. PN ;- a..nm m._._ "
.- . .- .- ;. n-m —mq.,
v 30D _ ip :
7 { e w K
REEEP I L %
< \ ..vu.n ,.JMW...wV . VMV ._. .H, .W
Civd "
LT - . TNiw : ; i _ n




bt And d b an 2 o a o]

v

(wAu) ad &y g puw (1yag) od4hr-y

AUOA ISIMTURAGS Y £G4 UMONS MOJ) AINas1o ) aue)d Uy sasiaos

(861 Fuwy oy sy
00T = Y e wsuoduion Ay

1

aandi g

,4....4--f

ECROIRS

.-\

‘

!V.vf&h.

Y
.
s it T

ERRN

- J.. -
.

Lt ".;‘:&."’ -

o
SRR

. e
PRI AY
T,

)
-

“' ‘I
A

.
e,




" aba aile 2ad as ot oae aee g Lt i il il i

H/AO

B/A
0

1073

e w—w

subharmon; - Tre e
4, = 000 S

’ » H
b
e e nK

Wi 5

= A W A J
8 . hates -\"\l
Joe Vo otude growth e 7 L N L P
I~ .tmplitu‘i*‘ et et \ )




<l

AP e
LI S

A
o
LS S %

o

"

\a.....r.f.-“r Pt p e T RO -4 R C . . b - ey e .
. . o o gt A s o . s ataa’ad ,: RS | T
o - r




e She Al e o gl Lbe dhbie dube Gdee Aha Ate J
e ~ TeETYV Ty v wiTwiTw

L

P o’ n9. H 8% %
AR PRI, -



